題目列表(包括答案和解析)

 0  446807  446815  446821  446825  446831  446833  446837  446843  446845  446851  446857  446861  446863  446867  446873  446875  446881  446885  446887  446891  446893  446897  446899  446901  446902  446903  446905  446906  446907  446909  446911  446915  446917  446921  446923  446927  446933  446935  446941  446945  446947  446951  446957  446963  446965  446971  446975  446977  446983  446987  446993  447001  447348 

(15)(本小題共12分)

   已知=2,求

(I)的值;  (II)的值.

(16)(本小題共14分)

   如圖, 在直三棱柱ABCA1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)DAB的中點(diǎn),

  (I)求證:ACBC1;

  (II)求證:AC 1//平面CDB1;

  (III)求異面直線 AC1B1C所成角的余弦值.

(17)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,,n=1,2,3,……,求

  (I)a2a3,a4的值及數(shù)列{an}的通項(xiàng)公式;

  (II)的值.

(18)(本小題共13分)

    甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率,

  (I)甲恰好擊中目標(biāo)的2次的概率;

  (II)乙至少擊中目標(biāo)2次的概率;

  (III)求乙恰好比甲多擊中目標(biāo)2次的概率.

(19)(本小題共14分)

   已知函數(shù)f(x)=-x3+3x2+9x+a,

(I)求f(x)的單調(diào)遞減區(qū)間;

(II)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

(20)(本小題共14分)

   如圖,直線 l1ykx(k>0)與直線l2y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2

(I)分別用不等式組表示W(wǎng)1和W2;

(II)若區(qū)域W中的動(dòng)點(diǎn)P(x,y)到l1l2的距離之積等于d2,求點(diǎn)P的軌跡C的方程;

(III)設(shè)不過(guò)原點(diǎn)O的直線l與(II)中的曲線C相交于M1,M2兩點(diǎn),且與l1,l2分別交于M3M4兩點(diǎn).求證△OM1M2的重心與△OM3M4的重心重合.

試題詳情

(9)拋物線y2=4x的準(zhǔn)線方程是      ;焦點(diǎn)坐標(biāo)是     

(10)的展開(kāi)式中的常數(shù)項(xiàng)是        (用數(shù)字作答)

(11)函數(shù)的定義域?yàn)?u>         .

(12)在△ABC中,AC=,∠A=45°,∠C=75°,則BC的長(zhǎng)為    

(13)對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1x2),有如下結(jié)論:

    ①f(x1+x2)=f(x1f(x2);② f(x1·x2)=f(x1)+f(x2); ③>0;④.

    當(dāng)f(x)=lgx時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是       .

(14)已知n次多項(xiàng)式,

   如果在一種算法中,計(jì)算(k=2,3,4,…,n)的值需要k-1次乘法,計(jì)算的值共需要9次運(yùn)算(6次乘法,3次加法),那么計(jì)算的值共需要        次運(yùn)算.

   下面給出一種減少運(yùn)算次數(shù)的算法:(k=0, 1,2,…,n-1).利用該算法,計(jì)算的值共需要6次運(yùn)算,計(jì)算的值共需要     次運(yùn)算.

試題詳情

  (1)設(shè)集合M={x| x>1,P={x| x2>1},則下列關(guān)系中正確的是

  (A)MP  (B)PM  (C)MP  ( D)

(2)為了得到函數(shù)的圖象,只需把函數(shù)上所有點(diǎn)

  (A)向右平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度

  (B)向左平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度

  (C)向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度

  (D)向左平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度

(3)“m=”是“直線(m+2)x+3my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的

   (A)充分必要條件     (B)充分而不必要條件

   (C)必要而不充分條件   (D)既不充分也不必要條件

  (4)若,且,則向量的夾角為

   (A)30°  (B)60°   (C)120°  (D)150°

  (5)從原點(diǎn)向圓 x2+y2-12y+27=0作兩條切線,則這兩條切線的夾角的大小為

   (A)  (B)    (C)   (D)

(6)對(duì)任意的銳角α,β,下列不等關(guān)系中正確的是

   (A)sin(α+β)>sinα+sinβ   (B)sin(α+β)>cosα+cosβ

   (C)cos(α+β)<sinα+sinβ  (D)cos(α+β)<cosα+cosβ

(7)在正四面體PABC中,D,E,F分別是AB,BC,CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是

   (A)BC//平面PDF      (B)DF⊥平面PA E

   (C)平面PDF⊥平面ABC   (D)平面PAE⊥平面 ABC

(8)五個(gè)工程隊(duì)承建某項(xiàng)工程的五個(gè)不同的子項(xiàng)目,每個(gè)工程隊(duì)承建1項(xiàng),其中甲工程隊(duì)不能承建1號(hào)子項(xiàng)目,則不同的承建方案共有

(A)種   (B)種  (C)種  (D)

試題詳情

20.(本小題共14分)

設(shè)是定義在[0,1]上的函數(shù),若存在上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.

對(duì)任意的[0,1]上的單峰函數(shù),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.

  (Ⅰ)證明:對(duì)任意的為含峰區(qū)間;

為含峰區(qū)間;

  (Ⅱ)對(duì)給定的r(0<r<0.5),證明:存在,使得由(Ⅰ)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r;

  (Ⅲ)選取,由(Ⅰ)可確定含峰區(qū)間為(0,)或(,1),在所得的含峰區(qū)間內(nèi)選取類似地可確定一個(gè)新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕地值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0.34.

  (區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)

[答案]

[詳解]

(I)證明:設(shè)的峰點(diǎn),則由單峰函數(shù)定義可知上單調(diào)遞增,

    在上單調(diào)遞減.

    當(dāng)時(shí),假設(shè),則從而

    這與矛盾,所以,即是含峰區(qū)間.

    當(dāng)時(shí),假設(shè),則,從而

    這與矛盾,所以,即是含峰區(qū)間.

(II)證明:由(I)的結(jié)論可知:

    當(dāng)時(shí),含峰區(qū)間的長(zhǎng)度為

    當(dāng)時(shí),含峰區(qū)間的長(zhǎng)度為

    對(duì)于上述兩種情況,由題意得

   

    由①得,即

    又因?yàn)?sub>,所以

將②代入①得

   

    由①和③解得

    所以這時(shí)含峰區(qū)間的長(zhǎng)度,即存在使得所確定的含峰區(qū)間

    的長(zhǎng)度不大于

(III)解:對(duì)先選擇的,由(II)可知

   

    在第一次確定的含峰區(qū)間為的情況下, 的取值應(yīng)滿足

   

    由④與⑤可得

    當(dāng)時(shí),含峰區(qū)間的長(zhǎng)度為

    由條件,得,從而

    因此,為了將含峰區(qū)間的長(zhǎng)度縮短到,只要取

   

[名師指津]

    本題為信息題,通過(guò)題目中給出的信息結(jié)合已學(xué)過(guò)的數(shù)學(xué)知識(shí)解決這類問(wèn)題.

試題詳情

19.(本小題共12分)

設(shè)數(shù)列

  (Ⅰ)求a2,a3;

  (Ⅱ)判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論;

  (Ⅲ)求

[答案]

[詳解]

解:(I)

 (II)

    因?yàn)?sub>,所以

    所以

    猜想:是公比為的等比數(shù)列.

    證明如下:

    因?yàn)?/p>

    所以是首項(xiàng)為,公比為的等比數(shù)列.

(III)

[名師指津]

    數(shù)列類型題,數(shù)列通項(xiàng)公式的遞推公式經(jīng)常在已知條件中給出,利用列舉、疊加、疊乘等方法求之

通項(xiàng)公式的方法應(yīng)掌握,另外遞推公式與數(shù)學(xué)歸納法思想一致,數(shù)學(xué)歸納法證明方法經(jīng)常在此類

題中運(yùn)用.等差等比數(shù)列的通項(xiàng)公式及前項(xiàng)和公式的求法和運(yùn)用,等差等比數(shù)列的性質(zhì)做為本

章復(fù)習(xí)的重點(diǎn)內(nèi)容.

試題詳情

18.(本小題共14分)

    如圖,直線l1與直線l2之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2.

  (Ⅰ)分別用不等式組表示W(wǎng)1和W2

  (Ⅱ)若區(qū)域W中的動(dòng)點(diǎn)P(x,y)到l1l2的距離之積等于d2,求點(diǎn)P的軌跡C的方程;

(Ⅲ)設(shè)不過(guò)原點(diǎn)O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點(diǎn),且與l1,l2分別

交于M3,M4兩點(diǎn). 求證△OM1M2的重心與△OM3M4的重心重合.

 

[答案]

[詳解]

解:(I)

(II)直線直線,由題意得

   

    即

    由

    所以

    所以動(dòng)點(diǎn)P的軌跡方程為

(III)當(dāng)直線軸垂直時(shí),可設(shè)直線的方程為由于直線、曲線C關(guān)于軸對(duì)稱,

    且關(guān)于軸對(duì)稱,于是的中點(diǎn)坐標(biāo)都為,所以

    的重心坐標(biāo)都為,即它們的重心重合.

    當(dāng)直線軸不垂直時(shí),設(shè)直線的方程為

    由,得

    由直線 與曲線C有兩個(gè)不同交點(diǎn),可知,且

   

    設(shè)的坐標(biāo)分別為

    則

    設(shè)的坐標(biāo)分別為

    由

    從而

    所以

    所以

    于是的重心與的重心也重合.

[名師指津]

    本題為解析幾何的綜合題型,在高考試題中解析經(jīng)常會(huì)與函數(shù)、數(shù)列、不等式、向量等綜合考

查各種數(shù)學(xué)思想及方法.

試題詳情

17.(本小題共13分)

    甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為

  (Ⅰ)記甲擊中目標(biāo)的次數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望Eξ;

(Ⅱ)求乙至多擊中目標(biāo)2次的概率;

(Ⅲ)求甲恰好比乙多擊中目標(biāo)2次的概率.

[答案]

[詳解]

解:(I) 

      

的概率分布如下表:


0
1
2
3
P




(II)乙至多擊中目標(biāo)2次的概率為

(III)設(shè)甲恰比乙多擊中目標(biāo)2次為事件A,甲恰擊中目標(biāo)2次且乙恰擊中目標(biāo)0次

為事件,甲恰擊中目標(biāo)3次且乙恰擊中目標(biāo)1次為事件,則

為互斥事件.

所以,甲恰好比乙多擊中目標(biāo)2次的概率為.

[名師指津]

    概率應(yīng)用題在每年的各地高考試題中基本上都會(huì)有所涉及,而且本類題相對(duì)比較容易解決,復(fù)習(xí)時(shí)一定將這類題落實(shí).

試題詳情

16.(本小題共14分)

    如圖,在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=,

AC⊥BD,垂足為E.

(Ⅰ)求證BD⊥A1C;

(Ⅱ)求二面角A1-BD-C­1的大小;

(Ⅲ)求異面直線AD與BC1所成角的余弦值.

解法一:

(I)在直四棱柱中,

    底面,

    在平面上的射影.

   

   

(II)連結(jié)

    與(I)同理可證

    為二面角的平面角.

   

   

    又

   

    在中,,

    即二面角的大小為90°

(III)過(guò)B作BF∥AD交,連結(jié)

    則就是所成的角.

   

中,。

即異面直線所成角的余弦值為。

解法二:

(I)同解法一.

(II)如圖,以D為坐標(biāo)原點(diǎn),

    在直線分別為軸,軸,軸,建立空間

    直角坐標(biāo)系.

    連結(jié)

    與(I)同理可證,

    為二面角的平面角.

   

    得

    ∴ !。

    ∴ 二面角的大小為90°.

(II)如圖,由,得。

。

即異面直線所成角的余弦值為。

解法三:

(I)同解法一.

  (II)如圖,建立空間直角坐標(biāo),坐標(biāo)原點(diǎn)為E.

    連結(jié)

    與(I)同理可證,

    為二面角的平面角.

    由

    得

   

    二面角的大小為

(III)如圖,由

    得

   

    異面直線所成角的大小為

[名師指津]

    三垂線定理,二面角的平面角、線面角、兩條異面直線所成的角作法及求法,線線、線面、面面平

行與直線的判斷與性質(zhì),構(gòu)成了立體幾何的主要內(nèi)容,平時(shí)學(xué)習(xí)時(shí)應(yīng)將之落實(shí).

試題詳情

15.(本小題共13分)

    已知函數(shù)

  (Ⅰ)求的單調(diào)減區(qū)間;

(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.

[答案]

[詳解]

解:(I)

,解得

所以函數(shù)的單調(diào)遞減區(qū)間為

(II)因?yàn)?sub>

所以

因?yàn)樵?sub>,所以單調(diào)遞增,又由于

上單調(diào)遞減,因此分別是在區(qū)間

上的最大值和最小值.

于是有,解得

因此

即函數(shù)在區(qū)間上的最小值為

[名師指津]

    函數(shù)求導(dǎo)的方法研究函數(shù)的單調(diào)性及最值問(wèn)題近幾年高考試題中屢屢出現(xiàn),成為熱門(mén)題型.要

    熟練掌握各種常見(jiàn)函數(shù)的求導(dǎo)方法及研究單調(diào)、最值的基本思路.

試題詳情

14.已知n次式項(xiàng)式.

   如果在一種算法中,計(jì)算的值需要k-1次乘法,計(jì)算P3(x0)的值共需要9次運(yùn)算(6次乘法,3次加法),那么計(jì)算P10(x0)的值共需要       

   次運(yùn)算.

    下面給出一種減少運(yùn)算次數(shù)的算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1).利用該算法,計(jì)算P3(x0)的值共需要6次運(yùn)算,計(jì)算P10(x0)的值共需要

       次運(yùn)算.

[答案]

[詳解]

    由題意知道的值需要次運(yùn)算,即進(jìn)行的乘法運(yùn)算可得到的結(jié)果

    對(duì)于這里進(jìn)行了3次運(yùn)算,

    進(jìn)行了2次運(yùn)算,進(jìn)行1次運(yùn)算,最后之間的加法

運(yùn)算進(jìn)行了3次這樣總共進(jìn)行了次運(yùn)算

對(duì)于總共進(jìn)行了

乘法運(yùn)算及次加法運(yùn)算所總共進(jìn)行了

由改進(jìn)算法可知:

    ,,

運(yùn)算次數(shù)從后往前算和為:

[名師指津]

    本題目屬于信息題,做此類題需要認(rèn)真分析題目本身所給的信息.

試題詳情


同步練習(xí)冊(cè)答案