題目列表(包括答案和解析)
(17)(本大題滿分12分)已知
(Ⅰ)求的值;
(Ⅱ)求的值。
解:(Ⅰ)由,得,所以=。
(Ⅱ)∵,∴。
(18)(本大題滿分12分)在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對(duì)各種不同的搭配方式作比較。在試制某種牙膏新品種時(shí),需要選用兩種不同的添加劑,F(xiàn)有芳香度分別為0,1,2,3,4,5的六種添加劑可供選用。根據(jù)試驗(yàn)設(shè)計(jì)原理,通常首先要隨機(jī)選取兩種不同的添加劑進(jìn)行搭配試驗(yàn)。
(Ⅰ)求所選用的兩種不同的添加劑的芳香度之和等于4的概率;
(Ⅱ)求所選用的兩種不同的添加劑的芳香度之和不小于3的概率;
解:設(shè)“所選用的兩種不同的添加劑的芳香度之和等于4”的事件為A,“所選用的兩種不同的添加劑的芳香度之和不小于3”的事件為B
(Ⅰ)芳香度之和等于4的取法有2種:、,故。
(Ⅱ)芳香度之和等于1的取法有1種:;芳香度之和等于2的取法有1種:,故。
(19)(本大題滿分12分)如圖,P是邊長(zhǎng)為1的正六邊形ABCDEF所在平面外一點(diǎn),,P在平面ABC內(nèi)的射影為BF的中點(diǎn)O。
(Ⅰ)證明⊥;
(Ⅱ)求面與面所成二面角的大小。
解:(Ⅰ)在正六邊形ABCDEF中,為等腰三角形,
∵P在平面ABC內(nèi)的射影為O,∴PO⊥平面ABF,∴AO為PA在平面ABF內(nèi)的射影;∵O為BF中點(diǎn),∴AO⊥BF,∴PA⊥BF。
(Ⅱ)∵PO⊥平面ABF,∴平面PBF⊥平面ABC;而O為BF中點(diǎn),ABCDEF是正六邊形 ,∴A、O、D共線,且直線AD⊥BF,則AD⊥平面PBF;又∵正六邊形ABCDEF的邊長(zhǎng)為1,∴,,。
過O在平面POB內(nèi)作OH⊥PB于H,連AH、DH,則AH⊥PB,DH⊥PB,所以為所求二面角平面角。
在中,OH=,=。
在中,;
而
(Ⅱ)以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),∴,,
設(shè)平面PAB的法向量為,則,,得,;
設(shè)平面PDB的法向量為,則,,得,;
(20)(本大題滿分12分)設(shè)函數(shù),已知是奇函數(shù)。
(Ⅰ)求、的值。
(Ⅱ)求的單調(diào)區(qū)間與極值。
證明(Ⅰ)∵,∴。從而=是一個(gè)奇函數(shù),所以得,由奇函數(shù)定義得;
(Ⅱ)由(Ⅰ)知,從而,由此可知,
和是函數(shù)是單調(diào)遞增區(qū)間;
是函數(shù)是單調(diào)遞減區(qū)間;
在時(shí),取得極大值,極大值為,在時(shí),取得極小值,極小值為。
(21)(本大題滿分12分)在等差數(shù)列中,,前項(xiàng)和滿足條件,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前項(xiàng)和。
解:(Ⅰ)設(shè)等差數(shù)列的公差為,由得:,所以,即,又=,所以。
(Ⅱ)由,得。所以,
當(dāng)時(shí),;
當(dāng)時(shí),
,
即。
(22)(本大題滿分14分)如圖,F(xiàn)為雙曲線C:的右焦點(diǎn)。P為雙曲線C右支上一點(diǎn),且位于軸上方,M為左準(zhǔn)線上一點(diǎn),為坐標(biāo)原點(diǎn)。已知四邊形為平行四邊形,。
(Ⅰ)寫出雙曲線C的離心率與的關(guān)系式;
(Ⅱ)當(dāng)時(shí),經(jīng)過焦點(diǎn)F且平行于OP的直線交雙曲線于A、B點(diǎn),若,求此時(shí)的雙曲線方程。
解:∵四邊形是,∴,作雙曲線的右準(zhǔn)線交PM于H,則,又,。
(Ⅱ)當(dāng)時(shí),,,,雙曲線為,設(shè)P,則,,所以直線OP的斜率為,則直線AB的方程為,代入到雙曲線方程得:,
又,由得:,解得,則,所以為所求。
(13)設(shè)常數(shù),展開式中的系數(shù)為,則=_____。
解:,由。
(14)在中,,M為BC的中點(diǎn),則_______。(用表示)
解:,,所以。
(15)函數(shù)對(duì)于任意實(shí)數(shù)滿足條件,若則__________。
解:由得,所以,則。
(16)平行四邊形的一個(gè)頂點(diǎn)A在平面內(nèi),其余頂點(diǎn)在的同側(cè),已知其中有兩個(gè)頂點(diǎn)到的距離分別為1和2 ,那么剩下的一個(gè)頂點(diǎn)到平面的距離可能是:
①1; ②2; ③3; ④4;
以上結(jié)論正確的為______________。(寫出所有正確結(jié)論的編號(hào))
解:如圖,B、D到平面的距離為1、2,則D、B的中點(diǎn)到平面的距離為,所以C到平面的距離為3;
B、C到平面的距離為1、2,D到平面的距離為,則,即,所以D到平面的距離為1;
C、D到平面的距離為1、2,同理可得B到平面的距離為1;所以選①③。
(1)設(shè)全集,集合,,則等于( )
A. B. C. D.
解:,則=,故選B
(2)不等式的解集是( )
A. B. C. D.
解:由得:,即,故選D。
(3)函數(shù)的反函數(shù)是( )
A. B.
C. D.
解:由得:,所以為所求,故選D。
(4)“”是“的( )
A.必要不充分條件 B.充分不必要條件
C.充分必要條件 D.既不充分也不必要條件
解:條件集是結(jié)論集的子集,所以選B。
(5)若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為( )
A. B. C. D.
解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D。
(6)表面積為 的正八面體的各個(gè)頂點(diǎn)都在同一個(gè)球面上,則此球的體積為
A. B. C. D.
解:此正八面體是每個(gè)面的邊長(zhǎng)均為的正三角形,所以由知,,則此球的直徑為,故選A。
(7)直線與圓沒有公共點(diǎn),則的取值范圍是
A. B. C. D.
解:由圓的圓心到直線大于,且,選A。
(8)對(duì)于函數(shù),下列結(jié)論正確的是( )
A.有最大值而無(wú)最小值 B.有最小值而無(wú)最大值
C.有最大值且有最小值 D.既無(wú)最大值又無(wú)最小值
解:令,則函數(shù)的值域?yàn)楹瘮?shù)的值域,而是一個(gè)減函減,故選B。
(9)將函數(shù)的圖象按向量平移,平移后的圖象如圖所示,則平移后的圖象所對(duì)應(yīng)函數(shù)的解析式是( )
A. B.
C. D.
解:將函數(shù)的圖象按向量平移,平移后的圖象所對(duì)應(yīng)的解析式為,由圖象知,,所以,因此選C。
(10)如果實(shí)數(shù)滿足條件 ,那么的最大值為( )
A. B. C. D.
解:當(dāng)直線過點(diǎn)(0,-1)時(shí),最大,故選B。
(11)如果的三個(gè)內(nèi)角的余弦值分別等于的三個(gè)內(nèi)角的正弦值,則( )
A.和都是銳角三角形 B.和都是鈍角三角形
C.是鈍角三角形,是銳角三角形
D.是銳角三角形,是鈍角三角形
解:的三個(gè)內(nèi)角的余弦值均大于0,則是銳角三角形,若是銳角三角形,由,得,那么,,所以是鈍角三角形。故選D。
(12)在正方體上任選3個(gè)頂點(diǎn)連成三角形,則所得的三角形是直角非等腰三角形的概率為( )
A. B. C. D.
解:在正方體上任選3個(gè)頂點(diǎn)連成三角形可得個(gè)三角形,要得直角非等腰三角形,則每個(gè)頂點(diǎn)上可得三個(gè)(即正方體的一邊與過此點(diǎn)的一條面對(duì)角線),共有24個(gè),得,所以選C。
2006年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(安徽卷)理科數(shù)學(xué)
第Ⅱ卷(非選擇題 共90分)
請(qǐng)用0.5毫米黑色墨水簽字筆在答題卡上書寫作答,在試題卷上書寫作答無(wú)效。
15.設(shè)F是橢圓的右焦點(diǎn),且橢圓上至少有21個(gè)不同的點(diǎn)Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,則d的取值范圍為 .
14.若的展開式中的常數(shù)項(xiàng)為84,則n= .
13.同時(shí)拋物線兩枚相同的均勻硬幣,隨機(jī)變量ξ=1表示結(jié)果中有正面向上,ξ=0表示結(jié)果中沒有正面向上,則Eξ= .
12.已知向量a=,向量b=,則|2a-b|的最大值是 .
11.設(shè)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)時(shí),
且則不等式的解集是________________________.
10.從正方體的八個(gè)頂點(diǎn)中任取三個(gè)點(diǎn)為頂點(diǎn)作三角形,其中直角三角形的個(gè)數(shù)為( )
A.56 B.52 C.48 D.40
9.設(shè)集合,那么點(diǎn)P(2,3)()的充要條件是 ( )
A. B.
C. D.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com