19.已知雙曲線與橢圓x2+$\frac{{y}^{2}}{2}$=1有公共焦點(diǎn),且雙曲線的離心率為$\sqrt{5}$,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$C.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

分析 求出橢圓的焦點(diǎn)坐標(biāo)得到雙曲線的焦點(diǎn)坐標(biāo),利用雙曲線的離心率,求解a,c,得到b,即可求出雙曲線的漸近線方程.

解答 解:雙曲線與橢圓x2+$\frac{{y}^{2}}{2}$=1有公共焦點(diǎn),可得c=1,
雙曲線的離心率為$\sqrt{5}$,可得a=$\frac{\sqrt{5}}{5}$,則b=$\frac{2\sqrt{5}}{5}$,
則該雙曲線的漸近線方程為:y=±$\frac{1}{2}$x.
故選:D.

點(diǎn)評(píng) 本題考查橢圓以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.畫邊長為2的正方體ABCD-A1B1C1D1的三視圖中的正視圖時(shí),若以△A1C1D所在的平面為投影面,則得到的正視圖面積為( 。
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個(gè)幾何體的體積是( 。
A.16B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義域?yàn)镽的函數(shù)f(x)滿足f(x+3)=2f(x),當(dāng)x∈[-1,2)時(shí),f(x)=$\left\{{\begin{array}{l}{{x^2}+x,x∈[-1,0)}\\{-{{(\frac{1}{2})}^{|x-1|}},x∈[0,2)}\end{array}}$.
若存在x∈[-4,-1),使得不等式t2-3t≥4f(x)成立,則實(shí)數(shù)t的取值范圍是(-∞,1]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.執(zhí)行如圖所示的程序框圖,輸出的所有值之和是37.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出以下命題:
(1)在回歸直線方程$\widehat{y}$=0.5x-85中,變量x=200時(shí),變量$\widehat{y}$的值一定是15;
(2)根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得出X2=7.469,而P(X2>6.635)≈0.01,則有99%的把握認(rèn)為兩個(gè)事件有關(guān);
(3)若不等式|x+1|-|x-1|>k有解,則k的取值范圍是k≤-2;
(4)隨機(jī)變量ζ滿足正態(tài)分布N(0,1),若P(|ξ|≤1.96)=0.950,則P(ξ<-1.96)=0.05.
其中正確的命題是(2)(將正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)m、n是兩條不同的直線,α、β為兩個(gè)不同的平面,則下列為真命題的是( 。
A.若m∥α,n⊥β且α⊥β,則m∥nB.若m⊥α,n⊥β且α⊥β,則m⊥n
C.若α⊥β,α∩β=m,n⊥m,則n⊥βD.若α∩β=m,n?α,m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x+π),則下列結(jié)論中正確的是( 。
A.將f(x)的圖象向左平移$\frac{π}{2}$個(gè)單位后得到g(x)的圖象
B.函數(shù)y=f(x)•g(x)的最小正周期為2π
C.函數(shù)y=f(x)•g(x)的最大值為1
D.x=$\frac{π}{2}$是函數(shù)y=f(x)•g(x)圖象的一條對(duì)稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(1+2x)6展開式中含x2項(xiàng)的系數(shù)為( 。
A.15B.30C.60D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案