科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB邊上一點,以BD為直徑的⊙O與邊AC相切于點E,連接DE并延長DE交BC的延長線于點F.
(1)求證:BD=BF;
(2)填空:
①若⊙O的半徑為5,tanB=,則CF= ;
②若⊙O與BF相交于點H,當∠B的度數為 時,四邊形OBHE為菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】某教研機構為了了解初中生課外閱讀名著的現(xiàn)狀,隨機抽取了某校50名初中生進行調查,依據相關數據繪制成了以下不完整的統(tǒng)計圖,請根據圖中信息解答下列問題:
類別 | 重視 | 一般 | 不重視 |
人數 | a | 15 | b |
(1)求表格中a,b的值;
(2)請補全統(tǒng)計圖;
(3)若某校共有初中生2000名,請估計該校“重視課外閱讀名著”的初中生人數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正方形ABCD,邊長為8,E是AB邊上的一點,連接DE,將△DAE沿DE所在直線折疊,使點A的對應點A1落在正方形的邊CD或BC的垂直平分線上,則AE的長度是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A的坐標為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側,點C在第一象限.將△ABC繞點A逆時針旋轉75°,如果點C的對應點E恰好落在y軸的正半軸上,那么點C的坐標為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個不透明的布袋中裝有標著數字2,3,4,5的4個小球,這4個小球的材質、大小和形狀完全相同,現(xiàn)從中隨機摸出兩個小球,這兩個小球上的數字之積大于9的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,對于點和,給出如下定義:
如果,那么稱點為點的“伴隨點”.
例如:點的“伴隨點”為點;點的“伴隨點”為點.
(1)直接寫出點的“伴隨點”的坐標.
(2)點在函數的圖象上,若其“伴隨點”的縱坐標為2,求函數的解析式.
(3)點在函數的圖象上,且點關于軸對稱,點的“伴隨點”為.若點在第一象限,且,求此時“伴隨點”的橫坐標.
(4)點在函數的圖象上,若其“伴隨點”的縱坐標的最大值為,直接寫出實數的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中,,,,點D在邊AB上,且,動點P從點A出發(fā),以每秒1個單位長度的速度向終點B運動,以PD為邊向上做正方形,設點P運動的時間為秒,正方形與重疊部分的面積為.
(1)用含有的代數式表示線段的長.
(2)當點落在的邊上時,求的值.
(3)求與的函數關系式.
(4)當點P在線段AD上運動時,做點N關于CD的對稱點,當與的某一個頂點的連線平分的面積時,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級上冊數學教材第94頁的部分內容.
線段垂直平分線
我們已知知道線段是軸對稱圖形,線段的垂直一部分線是線段的對稱軸,如圖直線是線段的垂直平分線,是上任一點,連結、,將線段與直線對稱,我們發(fā)現(xiàn)與完全重合,由此都有:線段垂直平分線的性質定理,線段垂直平分線上的點到線段的距離相等.
已知:如圖,,垂足為點,,點是直線上的任意一點.
求證:.
圖中的兩個直角三角形和,只要證明這兩個三角形全等,便可證明(請寫出完整的證明過程)
請根據教材中的分析,結合圖①,寫出“線段垂直平分線的性質定理”完整的證明過程,定理應用.
(1)如圖②,在中,直線、、分別是邊、、的垂直平分線.
求證:直線、、交于點.
(2)如圖③,在中,,邊的垂直平分線交于點,邊的垂直平分線交于點,若,,則的長為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明在練習操控航拍無人機,該型號無人機在上升和下落時的速度相同,設無人機的飛行高度為y(米),小明操控無人飛機的時間為x(分),y與x之間的函數圖象如圖所示.
(1)無人機上升的速度為 米/分,無人機在40米的高度上飛行了 分.
(2)求無人機下落過程中,y與x之間的函數關系式.
(3)求無人機距地面的高度為50米時x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠生產部門為了解本部門工人的生產能力情況,進行了抽樣調查.該部門隨機抽取了30名工人某天每人加工零件的個數,數據如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數據,得到條形統(tǒng)計圖:
樣本數據的平均數、眾數、中位數如下表所示:
統(tǒng)計量 | 平均數 | 眾數 | 中位數 |
數值 | 23 | m | 21 |
根據以上信息,解答下列問題:
(1)上表中眾數m的值為 ;
(2)為調動工人的積極性,該部門根據工人每天加工零件的個數制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據 來確定獎勵標準比較合適.(填“平均數”、“眾數”或“中位數”)
(3)該部門規(guī)定:每天加工零件的個數達到或超過25個的工人為生產能手.若該部門有300名工人,試估計該部門生產能手的人數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com