11.已知數(shù)列{ an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),則Sn=2n-1.

分析 Sn+1=an+2-an+1(n∈N*),則Sn+1=Sn+2-Sn+1-(Sn+1-Sn),化為:Sn+2+1=2(Sn+1+1).由a1=1,a2=2,可得:S2+1=2(S1+1),可得數(shù)列{Sn+1}是等比數(shù)列,首項為2,公比為2.即可得出.

解答 解:Sn+1=an+2-an+1(n∈N*),則Sn+1=Sn+2-Sn+1-(Sn+1-Sn),化為:Sn+2+1=2(Sn+1+1).
由a1=1,a2=2,可得:S2+1=2(S1+1),
因此Sn+1+1=2(Sn+1)對?n∈N*都成立.
∴數(shù)列{Sn+1}是等比數(shù)列,首項為2,公比為2.
∴Sn+1=2n,即Sn=2n-1,
故答案為:2n-1.

點評 本題考查了等比數(shù)列的定義、通項公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+3cost\\ y=-2+3sint\end{array}\right.$(t為參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=5.
(1)求圓C的普通方程及直線l的直角坐標方程;
(2)求圓心C到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-x2+2a+b(x∈R)的圖象在x=0處的切線為y=bx.(e為自然對數(shù)的底數(shù)).
(Ⅰ)求a,b的值;
(Ⅱ)若k∈Z,且f(x)+$\frac{1}{2}$(3x2-5x-2k)≥0對任意x∈R恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖是判斷“實驗數(shù)”的程序框圖,在[30,80]內(nèi)的所有整數(shù)中,“實驗數(shù)”的個數(shù)是12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某公司擁有多家連鎖店,所有連鎖店共有1800名員工,為調(diào)查他們的年齡分布情況,現(xiàn)隨機抽取該公司其中一家連鎖店,將該店所有員工的年齡記錄如下:
24,31,25,41,28,39,25,27,47,
32,29,36,24,34,23,37,45,22.
(Ⅰ)試估計該公司所有連鎖店的員工中年齡超過40歲的人數(shù);
(Ⅱ)在被抽到的連鎖店中,從年齡在區(qū)間[30,40)的員工中,隨機選取2人,求這2人年齡相差5歲的概率;
(Ⅲ)現(xiàn)從被抽到的連鎖店的所有員工中,選派3人參加活動,當這3人年齡的方差最大時,寫出這3人的年齡.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A、B、C的對邊分別為a、b、c,2acosC+2ccosA=a+c.
(Ⅰ)若$\frac{sinA}{sinB}=\frac{3}{4}$,求$\frac{c}$的值;
(Ⅱ)若$C=\frac{2π}{3}$,且c-a=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知在平面直角坐標系xOy內(nèi)的四點A(1,2),B(3,4),C(-2,2),D(-3,5),則向量$\overrightarrow{AB}$在向量$\overrightarrow{CD}$方向上的投影為(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若函數(shù)y=f(x)的圖象上存在不同兩點M、N關(guān)于原點對稱,則稱點對[M,N]是函數(shù)y=f(x)的一對“和諧點對”(點對[M,N]與[N,M]看作同一對“和諧點對”).已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤0}\\{|lnx|,x>0}\end{array}\right.$則此函數(shù)的“和諧點對”有( 。
A.0對B.1對C.2對D.4對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對于某個給定的函數(shù)f(x),稱方程f(x)=x的根為函數(shù)f(x)的不動點,若二次函數(shù)f(x)=ax2+bx+c(a>0)有兩個不動點x1,x2,且${x_2}-{x_1}>\frac{1}{a}$,當t<x1時,f(t)與x1的大小關(guān)系為( 。
A.f(t)>x1B.f(t)≥x1C.f(t)<x1D.f(t)≤x1

查看答案和解析>>

同步練習冊答案