1.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+3cost\\ y=-2+3sint\end{array}\right.$(t為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸非負(fù)半軸為極軸)中,直線l的方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=5.
(1)求圓C的普通方程及直線l的直角坐標(biāo)方程;
(2)求圓心C到直線l的距離.

分析 (1)消去參數(shù)t,求出圓C的普通方程即可;根據(jù)x=ρcosθ,y=ρsinθ,求出直線l的直角坐標(biāo)方程即可;
(2)根據(jù)點到直線的距離計算即可.

解答 解:(1)消去參數(shù)t,得到圓C的普通方程為:
(x-1)2+(y+2)2=9,
由$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=5,
得:-ρcosθ+ρsinθ-5=0,
∴直線l的直角坐標(biāo)方程是:x-y+5=0;
(2)依題意,圓心C坐標(biāo)是(1,-2)到直線l的距離是:
 $\frac{|-1-2-5|}{\sqrt{2}}$=4$\sqrt{2}$.

點評 本題考查了參數(shù)方程、極坐標(biāo)方程轉(zhuǎn)化為普通方程,考查點到直線的距離,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.甲、乙二人做射擊游戲,甲、乙射擊擊中與否是相互獨立事件.規(guī)則如下:若射擊一次擊中,則原射擊人繼續(xù)射擊;若射擊一次不中,就由對方接替射擊.已知甲、乙二人射擊一次擊中的概率均為$\frac{1}{3}$,且第一次由甲開始射擊.
①求前3次射擊中甲恰好擊中2次的概率$\frac{2}{27}$;
②求第4次由甲射擊的概率$\frac{13}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的可導(dǎo)函數(shù)f(x),其導(dǎo)函數(shù)為f'(x)滿足f'(x)>2x恒成立,則不等式f(4-x)+8x<f(x)+16的解集為(  )
A.(2,+∞)B.(4,+∞)C.(-∞,2)D.(-∞,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,求圓C的方程
(2)若過原點的直線m與圓C有公共點,求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點,點P(1,4),A(x1,y1),B(x2,y2)均在拋物線上.
(1)寫出該拋物線的方程;
(2)當(dāng)PA與PB的斜率存在且傾斜角互補時,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1+alnx}{x}$(a>0).
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,且函數(shù)y=f(x)圖象上一點的切線l過原點,求l的方程;
(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.我國古代數(shù)學(xué)家祖暅提出的祖暅原理:“冪勢既同,則積不容異”(“冪”是截面積,“勢”是幾何體的高),意思是兩個同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與三視圖(如圖所示)所表示的幾何體滿足“冪勢既同”,則該不規(guī)則幾何體的體積為( 。
A.8-2πB.8-πC.$4-\frac{π}{2}$D.$8-\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
由表中的數(shù)據(jù)得線性回歸方程$\widehat{y}$=bx+$\widehat{a}$中的b=-20,預(yù)測當(dāng)產(chǎn)品價格定為9.5(元)時,銷量為60件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{ an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),則Sn=2n-1.

查看答案和解析>>

同步練習(xí)冊答案