15.對于某個給定的函數(shù)f(x),稱方程f(x)=x的根為函數(shù)f(x)的不動點,若二次函數(shù)f(x)=ax2+bx+c(a>0)有兩個不動點x1,x2,且${x_2}-{x_1}>\frac{1}{a}$,當t<x1時,f(t)與x1的大小關系為( 。
A.f(t)>x1B.f(t)≥x1C.f(t)<x1D.f(t)≤x1

分析 方程f(x)-x=0的兩個根x1,x2,所以構(gòu)造函數(shù),當t<x1時,利用函數(shù)的性質(zhì)推出x>f (t),然后作差x1-f(t),化簡分析出f(t)>x1,即可.

解答 解:令F(x)=f(x)-x.因為x1,x2是方程f(x)-x=0的根,所以
F(x)=a(x-x1)(x-x2).
當t<x1時,由于x1<x2,得(t-x1)(t-x2)>0,又a>0,得
F(t)=a(x-x1)(x-x2)<0,
即x>f(t).
x1-f(t)=x1-[t+F(t)]
=x1-t+a(x1-t)(t-x2
=(x1-t)[1+a(t-x2)],
因為x2-x1>$\frac{1}{a}$,所以x1-t>0,1+a(t-x2)<0.
得x1-f(t)<0.
由此得f(t)>x1

點評 本小題主要考查一元二次方程、二次函數(shù)和不等式的基礎知識,考查綜合運用數(shù)學知識分析問題和解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{ an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),則Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知A(3,5,2),B(-1,2,1),把$\overrightarrow{AB}$按向量$\overrightarrow{a}$=(2,1,1)平移后所得的向量是( 。
A.(-4,-3,-1)B.(-4,-3,0)C.(-2,-1,0)D.(-2,-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(Ⅰ)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關關系,試求y關于x的回歸方程;
(Ⅱ)政府若不調(diào)控,依此相關關系預測第12月份該市新建住宅的銷售均價.
(從3月到7月的參考數(shù)據(jù):$\sum_{i=1}^{5}$xi=25,$\sum_{i=1}^{5}$yi=5.36,$\sum_{i=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)=0.64;回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距的最小二乘法估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的離心率為$e=\frac{1}{2}$,左右焦點分別為F1,F(xiàn)2,以橢圓短軸為直徑的圓與直線$x-y+\sqrt{6}=0$相切.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點F1、斜率為k1的直線l1與橢圓E交于A,B兩點,過點F2、斜率為k2的直線l2與橢圓E交于C,D兩點,且直線l1,l2相交于點P,若直線OA,OB,OC,OD的斜率kOA,kOB,kOC,kOD滿足kOA+kOB=kOC+kOD,求證:動點P在定橢圓上,并求出此橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,$2\overrightarrow{BD}=\overrightarrow{DC}$,AB=4,AD=AC=3,則BC=$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知在平面直角坐標系中,$\overrightarrow{a}$=(-6,8),$\overrightarrow{a}$•$\overrightarrow$=-24,則向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影是$-\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知某海濱浴場的海浪高度(單位:米)是時間(單位:小時,0≤t≤24)的函數(shù),記作y=f(t),如表是某日各時的浪高數(shù)據(jù):
 t(時) 0 1215  18 2124 
 y(米) 1.5 1.00.5  1.0 1.5 1.0 0.51.0 1.5 
(Ⅰ)在如圖的網(wǎng)格中描出所給的點;
(Ⅱ)觀察圖,從y=at+b,y=at2+bt+c,y=Acos(ωx+p)中選擇一個合適的函數(shù)模型,并求出該擬合模型的解析式;
(Ⅲ)依據(jù)規(guī)定,當海浪高度高于1.25米時蔡對沖浪愛好者開放,請依據(jù)(Ⅱ)的結(jié)論判斷一天內(nèi)的8:00到20:00之間有多長時間可供沖浪愛好者進行活動.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知z是復數(shù),z+2i與$\frac{z}{2-i}$均為實數(shù).
(1)求復數(shù)z;
(2)復數(shù)(z+ai)2在復平面上對應的點在第一象限,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案