18.定義在R上的函數(shù)f(x)的反函數(shù)為f-1(x),且對任意的x都有f(x)+f(6-x)=2,若ab=100,則f-1(lga)+f-1(lgb)=( 。
A.2B.3C.4D.6

分析 根據(jù)反函數(shù)與原函數(shù)的性質(zhì)可知:原函數(shù)的定義域就反函數(shù)的值域,即可求出.

解答 解:由題意,任意的x都有f(x)+f(6-x)=2,
根據(jù)原函數(shù)的定義域就反函數(shù)的值域,
令f(x)=lga,f(6-x)=lgb,
則f-1(lga)+f-1(lgb)=f(x)+f(6-x)=lga+lgb=lgab=lg100=2.
故選:A.

點評 本題考查了反函數(shù)與原函數(shù)的性質(zhì):即原函數(shù)的定義域就反函數(shù)的值域,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.復數(shù)$\frac{{(1-i{)^2}}}{3-i}$的值是( 。
A.$-\frac{1}{4}+\frac{3}{4}i$B.$\frac{1}{4}-\frac{3}{4}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙兩人這幾場比賽得分的中位數(shù)分別是18,23.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在數(shù)列{an}中,a1=1,an+1-an=2n+1,則數(shù)列的通項an=n2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)y=cos2x+$\sqrt{3}$sinxcosx在區(qū)間$[-\frac{π}{6},\frac{π}{4}]$上的值域是[0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x|(x-2)(x+6)<0},B={x|y=$\sqrt{1-x}$},則A∩B=(  )
A.(-6,1)B.(-6,1]C.(1,2)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.隨機變量X的取值為0,1,2,若P(X=0)=$\frac{1}{5}$,E(X)=1,則D(X)=( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$cos2x-2cos2(x+$\frac{π}{4}$)+1.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)(1+$\frac{1}{2}$x)m=a0+a1x+a2x2+a3x3+…+amxm,若a0,a1,a2成等差數(shù)列.
(Ⅰ)求展開式的中間項;
(Ⅱ)求展開式中所有含x奇次冪的系數(shù)和.

查看答案和解析>>

同步練習冊答案