分析 (Ⅰ)由2a1=a0+a2,求得m=8,可得展開式的中間項是第五項,再根據通項公式求得結果.
(Ⅱ)在所給的等式中,分別令x=1、x=-1,可得2個等式,由這2個等式即可求得展開式中所有含x奇次冪的系數和.
解答 解:(Ⅰ)依題意a0=1,${a_1}=\frac{m}{2}$,${a_2}={C_m}^2{(\frac{1}{2})^2}$,由2a1=a0+a2
可得m=1(舍去),或m=8,
所以${(1+\frac{1}{2}x)^m}$展開式的中間項是第五項為:${T_5}=C_8^4{(\frac{1}{2}x)^4}=\frac{35}{8}{x^4}$;
(Ⅱ)${(1+\frac{1}{2}x)^m}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_m}{x^m}$
即${(1+\frac{1}{2}x)^8}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_8}{x^8}$
令x=1則${a_0}+{a_1}+{a_2}+{a_3}+…+{a_8}={(\frac{3}{2})^8}$,
令x=-1則${a_0}-{a_1}+{a_2}-{a_3}+…+{a_8}={(\frac{1}{2})^8}$,
所以${a_1}+{a_3}+{a_5}+{a_7}=\frac{{{3^8}-1}}{2^9}=\frac{205}{16}$,
所以展開式中含x的奇次冪的系數和為$\frac{205}{16}$.
點評 本題主要考查二項式定理的應用,二項式展開式的通項公式,求展開式的系數和常用的方法是賦值法,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
年份202x(年) | 0 | 1 | 2 | 3 | 4 |
人口數 y(十萬) | 5 | 7 | 8 | 11 | 19 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\stackrel{∧}{y}$=-10x-100 | B. | $\stackrel{∧}{y}$=10x-100 | C. | $\stackrel{∧}{y}$=-10x+200 | D. | $\stackrel{∧}{y}$=10x-200 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{7π}{2}$ | B. | 4π | C. | $\frac{9π}{2}$ | D. | 5π |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com