8.復(fù)數(shù)$\frac{{(1-i{)^2}}}{3-i}$的值是(  )
A.$-\frac{1}{4}+\frac{3}{4}i$B.$\frac{1}{4}-\frac{3}{4}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

分析 利用復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算法則直接求解.

解答 解:$\frac{{{{(1-i)}^2}}}{3-i}=\frac{-2i}{3-i}=\frac{-2i(3+i)}{(3-i)(3+i)}=\frac{2-6i}{10}=\frac{1}{5}-\frac{3}{5}i$.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的運(yùn)算,涉及到復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算法則等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,∠B=$\frac{π}{6}$,AC=$\sqrt{5}$,D是AB邊上一點(diǎn),CD=2,△ACD的面積為2,∠ACD為銳角,則BC=$\frac{8\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},則如圖陰影部分表示的集合是( 。
A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a,b∈R,且ex+1≥ax+b對(duì)?x∈R恒成立(其中e為自然對(duì)數(shù)的底數(shù)),則ab的最大值為( 。
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖是一個(gè)算法流程圖,則輸出S的值為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2$,$|\overrightarrow b|=2$,$(\overrightarrow a+\overrightarrow b)•(3\overrightarrow a-\overrightarrow b)=4$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)α、β為互不重合的平面,m、n為互不重合的直線,給出下列四個(gè)命題:
①若m⊥α,n?α,則m⊥n;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;
④若m⊥α,α⊥β,m∥n,則n∥β.
其中所有正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且$∠{F_1}P{F_2}=\frac{π}{3}$,則橢圓和雙曲線離心率倒數(shù)之和的最大值為(  )
A.$\frac{4}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.4D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)的反函數(shù)為f-1(x),且對(duì)任意的x都有f(x)+f(6-x)=2,若ab=100,則f-1(lga)+f-1(lgb)=( 。
A.2B.3C.4D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案