7.已知函數(shù)f(x)=$\sqrt{3}$cos2x-2cos2(x+$\frac{π}{4}$)+1.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最值.

分析 (Ⅰ)化函數(shù)f(x)為正弦型函數(shù),
根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求出x∈[0,$\frac{π}{2}$]時,sin(2x+$\frac{π}{3}$)的取值范圍,
即可求出f(x)的最大、最小值.

解答 解:(Ⅰ)函數(shù)f(x)=$\sqrt{3}$cos2x-2cos2(x+$\frac{π}{4}$)+1
=$\sqrt{3}$cos2x-cos(2x+$\frac{π}{2}$)
=$\sqrt{3}$cos2x+sin2x
=2sin(2x+$\frac{π}{3}$);
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z);
(Ⅱ)當x∈[0,$\frac{π}{2}$]時,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
∴f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值為2,最小值為-$\sqrt{3}$;
且x=$\frac{π}{12}$時f(x)取得最大值2,x=$\frac{π}{2}$時f(x)取得最小值-$\sqrt{3}$.

點評 本題考查了三角函數(shù)的恒等變換與三角函數(shù)的圖象和性質(zhì)的應用問題,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且$∠{F_1}P{F_2}=\frac{π}{3}$,則橢圓和雙曲線離心率倒數(shù)之和的最大值為( 。
A.$\frac{4}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.4D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)的反函數(shù)為f-1(x),且對任意的x都有f(x)+f(6-x)=2,若ab=100,則f-1(lga)+f-1(lgb)=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,△PAD為正三角形,四邊形ABCD為直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,點E、F分別為AD、CP的中點,AD=AB=2CD=2.
(Ⅰ)證明:直線EF∥平面PAB;
(Ⅱ)求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(1+x)6=a0+a1x+a2x2+…+a6x6,其中x、ai∈R,i=0,1,…,6,則a1+a3+a5=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,則z=x-y的取值范圍是( 。
A.[0,3]B.[-$\frac{17}{5}$,3]C.[-$\frac{17}{5}$,1]D.[-$\frac{17}{5}$,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=|x+2|-2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[-2,1]使不等式a+1>f(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.對于函數(shù)f(x)=x2-2x+3(x≥2),若存在x0∈[2,+∞),使f(x0)=m成立,則實數(shù)m的取值范圍為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積是( 。
A.$\frac{7π}{2}$B.C.$\frac{9π}{2}$D.

查看答案和解析>>

同步練習冊答案