分析 (Ⅰ)化函數(shù)f(x)為正弦型函數(shù),
根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求出x∈[0,$\frac{π}{2}$]時,sin(2x+$\frac{π}{3}$)的取值范圍,
即可求出f(x)的最大、最小值.
解答 解:(Ⅰ)函數(shù)f(x)=$\sqrt{3}$cos2x-2cos2(x+$\frac{π}{4}$)+1
=$\sqrt{3}$cos2x-cos(2x+$\frac{π}{2}$)
=$\sqrt{3}$cos2x+sin2x
=2sin(2x+$\frac{π}{3}$);
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z);
(Ⅱ)當x∈[0,$\frac{π}{2}$]時,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
∴f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值為2,最小值為-$\sqrt{3}$;
且x=$\frac{π}{12}$時f(x)取得最大值2,x=$\frac{π}{2}$時f(x)取得最小值-$\sqrt{3}$.
點評 本題考查了三角函數(shù)的恒等變換與三角函數(shù)的圖象和性質(zhì)的應用問題,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | 4 | D. | $\frac{{4\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | 32 | C. | 64 | D. | 128 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,3] | B. | [-$\frac{17}{5}$,3] | C. | [-$\frac{17}{5}$,1] | D. | [-$\frac{17}{5}$,0] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7π}{2}$ | B. | 4π | C. | $\frac{9π}{2}$ | D. | 5π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com