【題目】已知為圓上的動點(diǎn),點(diǎn)在圓的半徑上運(yùn)動,點(diǎn)上,且滿足,其中.

1)求點(diǎn)的軌跡方程;

2)設(shè)不過原點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),且點(diǎn)關(guān)于恒過定點(diǎn)的直線對稱.面積的取值范圍.

【答案】12

【解析】

1)根據(jù)橢圓的定義判斷出點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),求得的值,進(jìn)而求得點(diǎn)的軌跡方程.

2)設(shè)出直線的方程為、直線的方程為,聯(lián)立直線的方程和點(diǎn)的軌跡方程,消去化簡并令其判別式大于零.將線段中點(diǎn)代入直線的方程,求得的關(guān)系式,并由此求得的取值范圍.求得弦長的表達(dá)式,求得點(diǎn)到直線的距離,由此求得三角形面積的表達(dá)式,利用二次函數(shù)的性質(zhì)求得三角形面積的取值范圍.

1)由題意是線段的垂直平分線,

點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),焦距為2,長軸長為的橢圓,

,故點(diǎn)的軌跡方程是

2)設(shè)直線的方程為,由題意知,則直線的方程為.

聯(lián)立消去,得

將線段的中點(diǎn)坐標(biāo)代入,得

由①②得

,則.轉(zhuǎn)化為,也即.轉(zhuǎn)化為.,且到直線的距離為.

設(shè)的面積為,

當(dāng)且僅當(dāng)時,等號成立,此時滿足

面積的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)抽取100名考生的某次考試成績,按照[75,80),[8085),[85,90),[90,95),[95,100](滿分100分)分為5組,制成如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于75分).已知第3組,第4組,第5組的頻數(shù)成等差數(shù)列;第1組,第5組,第4組的頻率成等比數(shù)列.

1)求頻率分布直方圖中a的值,并估計抽取的100名學(xué)生成績的中位數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)若從第3組、第4組、第5組中按分層抽樣的方法抽取6人,并從中選出3人,求這3人中至少有1人來自第4組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為橢圓上一點(diǎn). 的重心為,內(nèi)心為,且,則該橢圓的離心率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,不等式恒成立,求的最小值;

2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面底面,是邊長為2的正三角形,已知點(diǎn)滿足.

1)求二面角的大;

2)求異面直線的距離;

3)直線上是否存在點(diǎn),使平面?若存在,請確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第七屆世界軍人運(yùn)動會于20191018日至20191027日在中國武漢舉行,第七屆世界軍人運(yùn)動會是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運(yùn)會之后我國舉辦的規(guī)模最大的國際體育盛會.來自109個國家的9300余名軍體健兒在江城武漢同場競技、增進(jìn)友誼.運(yùn)動會共設(shè)置射擊、游泳、田徑、籃球等27個大項(xiàng)、329個小項(xiàng).經(jīng)過激烈角逐,獎牌榜的前6名如下:

某大學(xué)德語系同學(xué)利用分層抽樣的方式從德國獲獎選手中抽取了9名獲獎代表.

國家

金牌

銀牌

銅牌

獎牌總數(shù)

中國

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

法國

13

20

24

57

波蘭

11

15

34

60

德國

10

15

20

45

1)請問這9名獲獎代表中獲金牌、銀牌、銅牌的人數(shù)分別是多少人?

2)從這9人中隨機(jī)抽取3人,記這3人中銀牌選手的人數(shù)為,求的分布列和期望;

3)從這9人中隨機(jī)抽取3人,求已知這3人中有獲金牌運(yùn)動員的前提下,這3人中恰好有1人為獲銅牌運(yùn)動員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為常數(shù),函數(shù)

1)過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求;

2)令,若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn),過A作兩條不同直線,其中直線關(guān)于直線對稱.

1)求拋物線E的方程及其準(zhǔn)線方程;

2)設(shè)直線分別交拋物線E兩點(diǎn)(均不與A重合),若以線段為直徑的圓與拋物線E的準(zhǔn)線相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求證:當(dāng)時,;

2)若對任意存在使成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案