【題目】已知為常數(shù),函數(shù)
(1)過(guò)坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求;
(2)令,若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求的取值范圍.
【答案】(1);(2).
【解析】
(1)求出,求出切線的點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,得到關(guān)于的方程,求解即可;(2)設(shè),由在是減函數(shù),,通過(guò)研究的正負(fù)可判斷的單調(diào)性,進(jìn)而可得函數(shù)的單調(diào)性,可求參數(shù)的取值范圍.
(1),
所以切線的斜率為,
切線方程為。
將代入得,
即,顯然是方程的解,
又在上是增函數(shù),
方程只有唯一解,故;
(2)
設(shè),
在上是減函數(shù),
,
當(dāng)時(shí),即時(shí),,
在是增函數(shù),又,
在恒成立,即在恒成立,
在上單調(diào)遞減函數(shù),所以,滿足題意,
當(dāng)時(shí),即,,
函數(shù)有唯一的零點(diǎn),設(shè)為,則在上單調(diào)遞增,
在單調(diào)遞減,又,
又在內(nèi)唯一零點(diǎn),
當(dāng)時(shí),,
當(dāng)時(shí),,
從而在單調(diào)遞減,在單調(diào)遞增,
不合題意,
所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)在上存在極大值M,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家統(tǒng)計(jì)局?jǐn)?shù)據(jù),1978年至2018年我國(guó)GDP總量從0.37萬(wàn)億元躍升至90萬(wàn)億元,實(shí)際增長(zhǎng)了242倍多,綜合國(guó)力大幅提升.
將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國(guó)GDP總量,表中,.
3 | 26.474 | 1.903 | 10 | 209.76 | 14.05 |
(1)根據(jù)數(shù)據(jù)及統(tǒng)計(jì)圖表,判斷與(其中為自然對(duì)數(shù)的底數(shù))哪一個(gè)更適宜作為全國(guó)GDP總量關(guān)于的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由),并求出關(guān)于的回歸方程.
(2)使用參考數(shù)據(jù),估計(jì)2020年的全國(guó)GDP總量.
線性回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
,.
參考數(shù)據(jù):
4 | 5 | 6 | 7 | 8 | |
的近似值 | 55 | 148 | 403 | 1097 | 2981 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為圓上的動(dòng)點(diǎn),點(diǎn)在圓的半徑上運(yùn)動(dòng),點(diǎn)在上,且滿足,其中.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)不過(guò)原點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),且點(diǎn)關(guān)于恒過(guò)定點(diǎn)的直線對(duì)稱.求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是等比數(shù)列,有下列四個(gè)命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等比數(shù)列,其中正確命題的序號(hào)是( )
A.②④B.③④C.②③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱柱的底面邊長(zhǎng),側(cè)棱長(zhǎng),它的外接球的球心為,點(diǎn) 是的中點(diǎn),點(diǎn)是球上的任意一點(diǎn),有以下命題:
① 的長(zhǎng)的最大值為9;
②三棱錐的體積的最大值是;
③存在過(guò)點(diǎn)的平面,截球的截面面積為;
④三棱錐的體積的最大值為20;
⑤過(guò)點(diǎn)的平面截球所得的截面面積最大時(shí),垂直于該截面.
其中是真命題的序號(hào)是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,使電路接通,開(kāi)關(guān)不同的開(kāi)閉方式有( )
A. 11種B. 20種
C. 21種D. 12種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知i為虛數(shù)單位,下列說(shuō)法中正確的是( )
A.若復(fù)數(shù)z滿足,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在以為圓心,為半徑的圓上
B.若復(fù)數(shù)z滿足,則復(fù)數(shù)
C.復(fù)數(shù)的模實(shí)質(zhì)上就是復(fù)平面內(nèi)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,也就是復(fù)數(shù)對(duì)應(yīng)的向量的模
D.復(fù)數(shù)對(duì)應(yīng)的向量為,復(fù)數(shù)對(duì)應(yīng)的向量為,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷(xiāo)售量(單位:t)的影響.該公司對(duì)近5年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬(wàn)元)和年銷(xiāo)售量y(單位:t)具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
(1)根據(jù)表中數(shù)據(jù)建立年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問(wèn)題:
①當(dāng)年宣傳費(fèi)為10萬(wàn)元時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤(rùn)與年宣傳費(fèi)的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計(jì)公式分別為
參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com