18.已知$cos(π+α)=\frac{4}{5}$,且tanα>0.
(1)由tanα的值;
(2)求$\frac{{2sin(π-α)+sin(\frac{π}{2}-α)}}{{cos(-α)+4cos(\frac{π}{2}+α)}}$的值.

分析 (1)利用同角三角函數(shù)的基本關(guān)系的應(yīng)用,誘導(dǎo)公式,求得tanα的值.
(2)利用 誘導(dǎo)公式,求得要求式子的值.

解答 解:(1)由$cos(π+α)=\frac{4}{5}$,得$cosα=-\frac{4}{5}<0$,
又tanα>0,則α為第三象限角,所以$sinα=-\frac{3}{5}$,∴$tanα=\frac{sinα}{cosα}=\frac{3}{4}$.
(2)$\frac{{2sin(π-α)+sin(\frac{π}{2}-α)}}{{cos(-α)+4cos(\frac{π}{2}+α)}}=\frac{2sinα+cosα}{cosα-4sinα}=\frac{2tanα+1}{1-4tanα}=\frac{{2×\frac{3}{4}+1}}{{1-4×\frac{3}{4}}}=-\frac{5}{4}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知棱長為2的正方體ABCD-A1B1C1D1,球O與該正方體的各個面相切,則平面ACB1截此球所得的截面的面積為( 。
A.$\frac{8π}{3}$B.$\frac{5π}{3}$C.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,O為AD的中點,AD∥BC,CD⊥平面PAD,PA=PD=5.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)若AD=8,BC=4,CD=3,求平面PAB與平面PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若角α的終邊與單位圓的交點為$P(\frac{12}{13},-\frac{5}{13})$,則tanα=( 。
A.$\frac{5}{12}$B.$-\frac{5}{12}$C.$-\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,$f(x)=\left\{\begin{array}{l}\frac{3}{2}cos\frac{π}{2}(1-x),0≤x≤1\\{(\frac{1}{2})^x}+1,x>1\end{array}\right.$,若函數(shù)g(x)=5[f(x)]2-(5a+6)f(x)+6a(a∈R)有且僅有6個不同的零點,則實數(shù)a的取值范圍( 。
A.$(0,1]∪\left\{{\frac{3}{2}}\right\}$B.$(0,\frac{3}{2}]$C.$(0,1)∪\left\{{\frac{3}{2}}\right\}$D.$(0,\frac{3}{2})∪\left\{0\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=x+\frac{1}{x}({x≠0})$,命題p:?x>0,f(x)≥2,命題q:?x0<0,f(x0)≤-2,則下列判斷正確的是(  )
A.p是假命題B.¬q是真命題C.p∨(¬q)是真命題D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若輸入a0=0,a1=1,a2=2,a3=3,a4=4,a5=5,x0=-1,則輸出v的值為(  )
A.15B.3C.-3D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在棱臺ABC-FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,點G為△ABC的重心,N為AB中點,$\overrightarrow{AM}$=λ$\overrightarrow{AF}$(λ∈R,λ>0),
(1)當$λ=\frac{2}{3}$時,求證:GM∥平面DFN;
(2)若直線MN與CD所成角為$\frac{π}{3}$,試求二面角M-BC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+$\frac{2{a}^{2}+1}{a}$|+|x-a|(a>0)
(Ⅰ)證明:f(x)≥2$\sqrt{3}$;
(Ⅱ)當a=1時,求不等式f(x)≥5的解集.

查看答案和解析>>

同步練習冊答案