Loading [MathJax]/jax/output/CommonHTML/jax.js
13.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,fx={32cosπ21x0x112x+1x1,若函數(shù)g(x)=5[f(x)]2-(5a+6)f(x)+6a(a∈R)有且僅有6個不同的零點,則實數(shù)a的取值范圍(  )
A.01]{32}B.032]C.01{32}D.032{0}

分析 由g(x)=0,可得f(x)=65或f(x)=a,利用函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,fx={32cosπ21x0x112x+1x1,可得f(x)=65有4個零點,則f(x)=a有2個不同的零點,即可得出結(jié)論.

解答 解:由g(x)=0,可得f(x)=65或f(x)=a,
∵函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,fx={32cosπ21x0x112x+1x1,
∴f(x)=65有4個零點,則f(x)=a有2個不同的零點,
12x+11,∴0<a<1,
a=32時,f(x)=a有2個不同的零點,即±1,
故選A.

點評 本題考查函數(shù)的零點,考查學(xué)生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x2ex+lnt-a,若對任意的t∈[1,e],f(x)在區(qū)間[-1,1]總存在唯一的零點,則實數(shù)a的取值范圍是( �。�
A.[1,e]B.1+1ee]C.(1,e]D.[1+1ee]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別為BB1,B1C1的中點.
(Ⅰ)求證:直線EF∥面ACD1
(Ⅱ)求二面角D1-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,若直線l被圓C截得的弦長最短,則m的值為-34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,與函數(shù)y=ln(x-1)定義域相同的是(  )
A.y=1x1B.y=x112C.y=ex-1D.y=sinx1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知cosπ+α=45,且tanα>0.
(1)由tanα的值;
(2)求2sinπα+sinπ2αcosα+4cosπ2+α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.i為虛數(shù)單位,已知復(fù)數(shù)z滿足21+i=¯z+i,則z=( �。�
A.1+2iB.1-2iC.1+iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓Cx2a2+y2b2=1ab0的左焦點F1(-1,0),C的離心率為e,b是3e和a的等比中項.
(1)求曲線C的方程;
(2)傾斜角為α的直線過原點O且與C交于A,B兩點,傾斜角為β的直線過F1且與C交于D,E兩點,若α+β=π,求|AB|2|DE|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足cos2B-cos2C-sin2A=sinAsinB.
(1)求角C;
(2)若c=26,△ABC的中線CD=2,求△ABC面積S的值.

查看答案和解析>>

同步練習(xí)冊答案
关 闭