若{ an} 是各項(xiàng)均不為零的等差數(shù)列, 公差為d, Sn 為其前n 項(xiàng)和, 且滿足。數(shù)列{ bn} 滿足 為數(shù)列{ bn} 的前n項(xiàng)和。
(Ⅰ) 求an 和Tn;
(Ⅱ) 是否存在正整數(shù) m、 n( 1<m<n) , 使得T1、 Tm、 Tn 成等比數(shù)列? 若存在, 求出所有
m、 n的值; 若不存在, 請說明理由。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)A(1,3),B(-2,-1).若直線l:y=k(x-2)+1與線段AB相交,則k的取值范圍是( )
A. B.(-∞,-2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過、、三點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)D為橢圓上不同于、的任意一點(diǎn),,,求當(dāng)內(nèi)切圓的面積最大時(shí)內(nèi)切圓圓心的坐標(biāo);
(3)若直線:與橢圓交于、兩點(diǎn),證明直線與的交點(diǎn)在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知△ABC的周長為20,且頂點(diǎn)B (0,-4),C (0,4),則頂點(diǎn)A的軌跡方程是 ( )
(A)(x≠0) (B)(x≠0)
(C)(x≠0) (D)(x≠0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),過F1且垂直于x軸的直線與橢圓交于A、B兩點(diǎn),若△ABF2為正三角形,則該橢圓的離心率為 ( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y-1)2=4
C.(x-4)2+(y-2)2=1 D.(x-2)2+(y-1)2=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)與函數(shù)即為“同族函數(shù)”.請你找出下面哪個(gè)函數(shù)解析式也能夠被用來構(gòu)造“同族函數(shù)”的是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com