點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是

A.(x-2)2+(y+1)2=1           B.(x-2)2+(y-1)2=4

C.(x-4)2+(y-2)2=1           D.(x-2)2+(y-1)2=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如圖,在三棱柱ABC­A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;

(2)求二面角A1­BC1­B1的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 若{ an} 是各項(xiàng)均不為零的等差數(shù)列, 公差為d, Sn 為其前n 項(xiàng)和, 且滿足。數(shù)列{ bn} 滿足 為數(shù)列{ bn} 的前n項(xiàng)和。

(Ⅰ) 求an 和Tn;

(Ⅱ) 是否存在正整數(shù) m、 n( 1<m<n) , 使得T1、 Tm、 Tn 成等比數(shù)列? 若存在, 求出所有

m、 n的值; 若不存在, 請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如圖,在底面是正方形的四棱錐中,,點(diǎn)上,且.

(Ⅰ)求證:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知m,n是兩條不同直線,α,β,γ是三個(gè)不同平面,下列命題中正確的是

A.若m∥α,n∥α,則m∥n          

B.若α⊥γ,β⊥γ,則α∥β

C.若m∥α,m∥β,則α∥β          

D.若m⊥α,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知圓C過(guò)點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長(zhǎng)為2,則過(guò)圓心且與直線l垂直的直線的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)是兩個(gè)非空集合,定義運(yùn)算,已知,則       (   )

A.         B.           C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分)。設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立。

(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;

(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

(3)玩過(guò)這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了。請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知

(1)求函數(shù)的最小正周期和函數(shù)在上的單調(diào)減區(qū)間;

(2)若中,,求角.

查看答案和解析>>

同步練習(xí)冊(cè)答案