19.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟損失12.99億元,距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如下頻率分布直方圖(圖):
(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失;
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過6000元的居民中隨機抽出2戶進行捐款援助,求抽出的2戶居民損失均超過8000元的概率;
(3)臺風(fēng)后區(qū)委會號召該小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,在圖2表格空白外填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額超過或不超過500元和自身經(jīng)濟損失是否超過4000元有關(guān)?
經(jīng)濟損失不超過4000元經(jīng)濟損失超過4000元合計
捐款超過500元30
捐款不超過500元6
合計
附:臨界值參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

分析 (1)記每戶居民的平均損失為$\overline x$元,利用該組區(qū)間中點值作代表計算平均值即可;
(2)計算損失超過6000元的居民共有6戶,其中損失超過8000元的居民有3戶,
現(xiàn)從這6戶中隨機抽出2戶,計算抽出的2戶居民損失均超過8000元的概率值;
(3)根據(jù)題意填寫列聯(lián)表,計算觀測值,對照臨界值得出結(jié)論.

解答 解:(1)記每戶居民的平均損失為$\overline x$元,則:
$\overline{x}$=(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000
=3360;
(2)損失超過6000元的居民共有50×0.00003×(10000-6000)=6(戶),
其中損失超過8000元的居民有3戶,
現(xiàn)從這6戶中隨機抽出2戶,
則抽出的2戶居民損失均超過8000元的概率為
P=$\frac{{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{3}{15}$=$\frac{1}{5}$;
(3)根據(jù)題意填寫列聯(lián)表,如圖所示:

經(jīng)濟損失不超過4000元經(jīng)濟損失超過4000元合計
捐款超過500元30939
損款不超過500元5611
合計351550
計算${K^2}=\frac{{50×{{(30×6-9×5)}^2}}}{39×11×35×15}=4.046>3.841$,
所以有95%以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否4000元有關(guān).

點評 本題考查了頻率分布直方圖與獨立性檢驗以及古典概型的概率計算問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某青少年成長關(guān)愛機構(gòu)為了調(diào)研所在地區(qū)青少年的年齡與身高壯況,隨機抽取6歲,9歲,12歲,15歲,18歲的青少年身高數(shù)據(jù)各1000個,根據(jù)各年齡段平均身高作出如圖所示的散點圖和回歸直線L.根據(jù)圖中數(shù)據(jù),下列對該樣本描述錯誤的是( 。
A.據(jù)樣本數(shù)據(jù)估計,該地區(qū)青少年身高與年齡成正相關(guān)
B.所抽取數(shù)據(jù)中,5000名青少年平均身高約為145cm
C.直線L的斜率的值近似等于樣本中青少年平均身高每年的增量
D.從這5種年齡的青少年中各取一人的身高數(shù)據(jù),由這5人的平均年齡和平均身高數(shù)據(jù)作出的點一定在直線L上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=1+3x-x3有(  )
A.極小值-1,極大值1B.極小值-1,極大值3
C.極小值-2,極大值2D.極小值2,極大值3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為了解某公司員工的年收入和年支出的關(guān)系,隨機調(diào)查了5名員工,得到如下統(tǒng)計數(shù)據(jù)表:
收入x(萬元)8.08.610.011.412.0
支出y(萬元)4.15.26.16.77.9
根據(jù)上表可得回歸本線方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.65$,$\hat a=\overline y-\hat bx$,據(jù)此估計,該公司一名員工年收入為15萬元時支出為( 。
A.9.05萬元B.9.25萬元C.9.75萬元D.10.25萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列表述正確的是( 。
①歸納推理是由特殊到一般的推理;
②演繹推理是由一般到特殊的推理;
③類比推理是由特殊到一般的推理;
④分析法是一種間接證明法.
A.①②③④B.②③④C.①②④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知f($\sqrt{x}$+1)=x+2$\sqrt{x}$,求f(x)的解析式;
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程$\hat y=9.4x+9.1$,據(jù)此模型預(yù)報廣告費用為6萬元時,銷售額為( 。
A.72.0萬元B.67.7萬元C.65.5萬元D.63.6萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知菱形ABCD中,∠DAB=60°,AB=3,對角線AC與BD的交點為O,把菱形ABCD沿對角線BD折起,使得∠AOC=90°,則折得的幾何體的外接球的表面積為( 。
A.15πB.$\frac{15π}{2}$C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點O、N、P在三角形ABC所在平面內(nèi),且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{PA}•\overrightarrow{PB}$=$\overrightarrow{PB}•\overrightarrow{PC}$=$\overrightarrow{PC}•\overrightarrow{PA}$,則點O、N、P依次是三角形ABC的( 。
A.重心、外心、垂心B.重心、外心、內(nèi)心C.外心、重心、垂心D.外心、重心、內(nèi)心

查看答案和解析>>

同步練習(xí)冊答案