11.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程$\hat y=9.4x+9.1$,據(jù)此模型預(yù)報廣告費用為6萬元時,銷售額為( 。
A.72.0萬元B.67.7萬元C.65.5萬元D.63.6萬元

分析 把自變量為6代入線性回歸方程是y=9.4x+9.1,預(yù)報出結(jié)果.

解答 解:∴線性回歸方程是y=9.4x+9.1,
∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5,
故選:C

點評 本題考查了線性回歸方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.隨著社會的發(fā)展,食品安全問題漸漸成為社會關(guān)注的熱點,為了提高學(xué)生的食品安全意識,某學(xué)校組織全校學(xué)生參加食品安全知識競賽,成績的頻率分布直方圖如圖所示,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100),若該校的學(xué)生總?cè)藬?shù)為3000,則成績不超過60分的學(xué)生人數(shù)大約為900.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面四邊形ABCD中,AB=2,AD=$\sqrt{6}$$+\sqrt{2}$,BC=2$\sqrt{3}$,∠ABC=120°,∠DAB=75°
(Ⅰ)設(shè)△ABC、△ABD的面積分別為S1,S2,求證:S1<S2
(Ⅱ)求BD和DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟損失12.99億元,距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如下頻率分布直方圖(圖):
(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失;
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過6000元的居民中隨機抽出2戶進行捐款援助,求抽出的2戶居民損失均超過8000元的概率;
(3)臺風(fēng)后區(qū)委會號召該小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,在圖2表格空白外填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額超過或不超過500元和自身經(jīng)濟損失是否超過4000元有關(guān)?
經(jīng)濟損失不超過4000元經(jīng)濟損失超過4000元合計
捐款超過500元30
捐款不超過500元6
合計
附:臨界值參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\frac{6x}{{1+{x^2}}}$在區(qū)間[0,3]的最大值為( 。
A.3B.4C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將1個半徑為1的小鐵球與1個底面周長為2π,高4的鐵制圓柱重新鍛造成一個大鐵球,則該大鐵球的表面積為8$\root{3}{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義函數(shù)的“拐點”如下:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)數(shù),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),若方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”,已知任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心:若f(x)=x3-9x2+20x-4,數(shù)列{an}為等差數(shù)列,a5=3,則f(a1)+f(a2)+…+f(a9)=(  )
A.44B.36C.27D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2|x+a|+|x-$\frac{1}{a}$|(a≠0).
(1)當(dāng)a=1時,解不等式f(x)<4;
(2)求函數(shù)g(x)=f(x)+f(-x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知A(1,2),B(-2,1),O為坐標(biāo)原點,若直線l:ax+by=2與△ABO所圍成區(qū)域(包含邊界)沒有公共點,則a-b的取值范圍為[-2,+∞).

查看答案和解析>>

同步練習(xí)冊答案