【題目】甲、乙兩輛汽車沿同一公路從A地出發(fā)前往路程為100千米的B地,乙車比甲車晚出發(fā)15分鐘,行駛過程中所行駛的路程分別用y1、y2(千米)表示,它們與甲車行駛的時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示.

1)分別求出y1、y2關(guān)于x的函數(shù)解析式并寫出定義域;

2)乙車行駛多長時(shí)間追上甲車?

【答案】(1) (2)25

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù),可以求得、關(guān)于x的函數(shù)解析式并寫出定義域;

2)令(1)中的兩個(gè)函數(shù)的函數(shù)相等,求出x的值,然后再減去15,即可得到乙車行駛多長時(shí)間追上甲車.

解:(1)設(shè)關(guān)于的函數(shù)解析式是,

根據(jù)題意,得:,,

關(guān)于的函數(shù)解析式是

設(shè)關(guān)于的函數(shù)解析式是

根據(jù)題意,得:,

解得:,,

關(guān)于的函數(shù)解析式是

2)根據(jù)題意,得:,

解得:,

(分鐘),

答:乙車行駛25分鐘追上甲車.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點(diǎn)M是射線CO上的一個(gè)動點(diǎn),∠AOC=60°,則當(dāng)△ABM為直角三角形時(shí),AM的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,點(diǎn)DE分別是邊的中點(diǎn),連接,將繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為,、所在直線相交所成的銳角為

1)問題發(fā)現(xiàn)

當(dāng)時(shí),________;________°

2)拓展探究

試判斷:當(dāng)時(shí),的大小有無變化?請僅就圖2的情形給出證明.

3)在旋轉(zhuǎn)過程中,當(dāng)時(shí),直接寫出此時(shí)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐操作

如圖①,將矩形紙片沿對角線翻折,使點(diǎn)落在矩形所在平面內(nèi),相交于點(diǎn)E,連接

解決問題

1)在圖①中,

的位置關(guān)系為________

②將剪下后展開,得到的圖形是________;

2)若圖①中的矩形變?yōu)槠叫兴倪呅螘r(shí)(),如圖②所示,結(jié)論①和結(jié)論②是否成立,若成立,請?zhí)暨x其中的一個(gè)結(jié)論加以證明,若不成立,請說明理由;

拓展應(yīng)用

3)在圖②中,若,當(dāng)恰好為直角三角形時(shí),求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,將矩形繞點(diǎn)旋轉(zhuǎn),點(diǎn)的對應(yīng)點(diǎn)分別為、,當(dāng)落在邊的延長線上時(shí),邊與邊的延長線交于點(diǎn),聯(lián)結(jié),那么線段的長度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB=90°,BC=3,AC=4D是邊AB的中點(diǎn),點(diǎn)E為邊AC上的一個(gè)動點(diǎn)(與點(diǎn)AC不重合),過點(diǎn)EEFAB,交邊BC于點(diǎn)F.聯(lián)結(jié)DE、DF,設(shè)CE=x

1)當(dāng)x =1時(shí),求DEF的面積;

2)如果點(diǎn)D關(guān)于EF的對稱點(diǎn)為D’,點(diǎn)D’ 恰好落在邊AC上時(shí),求x的值;

3)以點(diǎn)A為圓心,AE長為半徑的圓與以點(diǎn)F為圓心,EF長為半徑的圓相交,另一個(gè)交點(diǎn)H恰好落在線段DE上,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小云統(tǒng)計(jì)了自己所住小區(qū)51日至30日的廚余垃圾分出量(單位:千克),相關(guān)信息如下:

.小云所住小區(qū)51日至30日的廚余垃圾分出量統(tǒng)計(jì)圖:

.小云所住小區(qū)51日至30日分時(shí)段的廚余垃圾分出量的平均數(shù)如下:

時(shí)段

1日至10

11日至20

21日至30

平均數(shù)

100

170

250

1)該小區(qū)51日至30日的廚余垃圾分出量的平均數(shù)約為 (結(jié)果取整數(shù))

2)已知該小區(qū)4月的廚余垃圾分出量的平均數(shù)為60,則該小區(qū)51日至30日的廚余垃圾分出量的平均數(shù)約為4月的 倍(結(jié)果保留小數(shù)點(diǎn)后一位);

3)記該小區(qū)51日至10日的廚余垃圾分出量的方差為511日至20日的廚余垃圾分出量的方差為521日至30日的廚余垃圾分出量的方差為.直接寫出的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行鋼筆書法大賽,對各年級同學(xué)的獲獎情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請結(jié)合圖中相關(guān)信息解答下列問題:

(1)扇形統(tǒng)計(jì)圖中三等獎所在扇形的圓心角的度數(shù)是______度;

(2)請將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎的同學(xué)中有來自七年級,有來自九年級,其他同學(xué)均來自八年級.現(xiàn)準(zhǔn)備從獲得一等獎的同學(xué)中任選2人參加市級鋼筆書法大賽,請通過列表或畫樹狀圖的方法求所選出的2人中既有八年級同學(xué)又有九年級同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組為了測量大樓的高度,先沿著斜坡走了米到達(dá)坡頂點(diǎn)處,然后在點(diǎn)處測得大樓頂點(diǎn)的仰角為,已知斜坡的坡度為,點(diǎn)到大樓的距離米,求大樓的高度.(參考數(shù)據(jù):,,

查看答案和解析>>

同步練習(xí)冊答案