【題目】如圖,矩形中,,,是邊上一點(diǎn),連接,將沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)是,連接,當(dāng)是直角三角形時(shí),則的值是________
【答案】3或6
【解析】
分兩種情況討論:①當(dāng)∠AFE=90°時(shí),易知點(diǎn)F在對(duì)角線AC上,設(shè)DE=x,則AE、EF均可用x表示,在Rt△AEF中利用勾股定理構(gòu)造關(guān)于x的方程即可;②當(dāng)∠AEF=90°時(shí),易知F點(diǎn)在BC上,且四邊形EFCD是正方形,從而可得DE=CD.
解:當(dāng)E點(diǎn)與A點(diǎn)重合時(shí),∠EAF的角度最大,但∠EAF小于90°,
所以∠EAF不可能為90°,
分兩種情況討論:
①當(dāng)∠AFE=90°時(shí),如圖1所示,
根據(jù)折疊性質(zhì)可知∠EFC=∠D=90°,
∴A、F、C三點(diǎn)共線,即F點(diǎn)在AC上,
∵四邊形ABCD是矩形,
∴AC=,
∴AF=ACCF=ACCD=106=4,
設(shè)DE=x,則EF=x,AE=8x,
在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,
即(8x)2=x2+42,
解得x=3,即DE=3;
②當(dāng)∠AEF=90°時(shí),如圖2所示,則∠FED=90°,
∵∠D=∠BCD=90°,DE=EF,
∴四邊形EFCD是正方形,
∴DE=CD=6,
故答案為:3或6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC平分∠DAB交⊙O于點(diǎn)C,過(guò)點(diǎn)C的直線垂直于AD交AB的延長(zhǎng)線于點(diǎn)P,弦CE交AB于點(diǎn)F,連接BE.
(1)求證:PD是⊙O的切線;
(2)若PC=PF,試證明CE平分∠ACB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),待轉(zhuǎn)盤(pán)自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱(chēng)為轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,用樹(shù)狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.已知A、B兩點(diǎn)的坐標(biāo)分別為A(0,),B(2,0).直線AB與反比例函數(shù)的圖象交于點(diǎn)C和點(diǎn)D(1,a).
(1)求直線AB和反比例函數(shù)的解析式.
(2)求∠ACO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長(zhǎng)CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個(gè)結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( 。
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).
(1)求k、m的值;
(2)已知點(diǎn)P(n,n)(n>0),過(guò)點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過(guò)點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.
①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說(shuō)明理由;
②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,,射線,點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),如果點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)時(shí),以為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市射擊隊(duì)甲、乙兩名隊(duì)員在相同的條件下各射耙10次,每次射耙的成績(jī)情況如圖所示:
(1)請(qǐng)將下表補(bǔ)充完整:
(2)請(qǐng)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行分析:
①?gòu)钠骄鶖?shù)和方差相結(jié)合看, 的成績(jī)好些;
②從平均數(shù)和中位數(shù)相結(jié)合看, 的成績(jī)好些;
③若其他隊(duì)選手最好成績(jī)?cè)?/span>9環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰(shuí)參加,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題:
已知:∠ACB是△ABC的一個(gè)內(nèi)角.
求作:∠APB=∠ACB.
小明的做法如下:
如圖
①作線段AB的垂直平分線m;
②作線段BC的垂直平分線n,與直線m交于點(diǎn)O;
③以點(diǎn)O為圓心,OA為半徑作△ABC的外接圓;
④在弧ACB上取一點(diǎn)P,連結(jié)AP,BP.
所以∠APB=∠ACB.
老師說(shuō):“小明的作法正確.”
請(qǐng)回答:
(1)點(diǎn)O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;
(2)∠APB=∠ACB的依據(jù)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com