【題目】如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數(shù)字即為轉出的數(shù)字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數(shù),重新轉動轉盤,直到指針指向一個扇形的內部為止)

(1)轉動轉盤一次,求轉出的數(shù)字是-2的概率;

(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數(shù)字之積為正數(shù)的概率.

【答案】(1);(2).

【解析】1)根據題意可求得2“-2”所占的扇形圓心角的度數(shù),再利用概率公式進行計算即可得;

(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據概率公式進行計算即可得.

(1)由題意可知:“1”“3”所占的扇形圓心角為120°,

所以2“-2”所占的扇形圓心角為360°-2×120°=120°,

∴轉動轉盤一次,求轉出的數(shù)字是-2的概率為;

(2)(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:

第一次 第二次

1

-2

3

1

(1,1)

(1,-2)

(1,3)

-2

(-2,1)

(-2,-2)

(-2,3)

3

(3,1)

(3,-2)

(3,3)

由上表可知:所有可能的結果共9種,其中數(shù)字之積為正數(shù)的的有5種,其概率為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】同學們都知道,表示5與 -2之差的絕對值,實際上也可以理解為 5 與 -2兩數(shù)在數(shù)軸上所對的兩點之間的距離,則使得這樣的整數(shù)____個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點E是邊AC上一點,線段BE垂直于∠BAC的平分線于點D,點M為邊BC的中點,連接DM

(1)求證: DMCE

(2)AD6,BD8DM2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聲音在空氣中傳播的速度簡稱音速,實驗測得音速與氣溫的一些數(shù)據如下表

1)此表反映的是變量      變化的情況.

2)請直接寫出yx的關系式為   

3)當氣溫為22℃時,某人看到煙花燃放5秒后才聽到聲響,求此人與煙花燃放所在地的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人去年水果批發(fā)市場采購蘋果,他看中了兩家蘋果.這兩家蘋果品質一樣,零售價都為6/千克,批發(fā)價各不相同.

1家規(guī)定:批發(fā)數(shù)量不超過1000千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量超過1000千克且不超過2000千克,所有蘋果按零售價的90%優(yōu)惠;超過2000千克,所有蘋果按零售價的88%優(yōu)惠.

家的規(guī)定如下表:

數(shù)量范圍(千克)

0—500

500以上—1500

1500以上—2500

2500以上

價格(元)

零售價的95%

零售價的85%

零售價的75%

零售價的70%

表格說明:批發(fā)價格分段計算,如某人批發(fā)蘋果2100千克,則總費用=6×95%×500+6×85%×1000+6×75%×2100-1500).

1)如果他批發(fā)600千克蘋果,那么他在、兩家批發(fā)分別需要多少元?

2)如果他批發(fā)千克蘋果(1500<<2000),請你分別用含的代數(shù)式表示在、兩家批發(fā)所需的費用.

3)現(xiàn)在他要批發(fā)1800千克蘋果,選擇在哪家批發(fā)更優(yōu)惠呢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,B=90,ACB=30,AB=2AD=2AC,DC=2BC

1)求證:ACD為直角三角形;(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊三角板重疊放置,其中C=∠BDE=90°,A=45°,E=30°,AB=DE=12.求重疊部分四邊形DBCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應的數(shù)為﹣20,B點對應的數(shù)為100.

(1)請寫出與A,B兩點距離相等的點M所對應的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).

(3)若當電子螞蟻PB點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)已知2b+1的平方根為±33a+2b1的算術平方根為4,求a+2b的平方根.

2)若x、y都是實數(shù),且y=++8,求x+y的值.

查看答案和解析>>

同步練習冊答案