精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是O的直徑,AC平分DAB交O于點C,過點C的直線垂直于AD交AB的延長線于點P,弦CE交AB于點F,連接BE.

(1)求證:PD是O的切線;

(2)若PC=PF,試證明CE平分∠ACB.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

(1)連接OC,如圖,先證明∠2=3得到OCAD,然后利用平行線的性質得到OCCD,從而根據切線的判定定理得到PD是⊙O的切線;

(2)先證明∠1=PCB,再根據等腰三角形的性質得∠PCF=PFC,然后利用∠PCF=PCB+BCF,PFC=1+ACF,從而可判斷∠BCF=ACF.

證明:(1)連接OC,如圖,

AC平分∠DAB

∴∠1=2,

OAOC

∴∠1=3,

∴∠2=3,

OCAD,

ADCD,

OCCD

PD是⊙O的切線;

(2)OCPC

∴∠PCB+BCO=90°,

AB為直徑,

∴∠ACB=90°,即∠3+BCO,

∴∠3=PCB

而∠1=3,

∴∠1=PCB,

PCPF

∴∠PCFPFC,

而∠PCFPCB+BCF,PFC1+ACF,

∴∠BCFACF,

CE平分∠ACB

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,E為CD的中點,AE的垂直平分線分別交AD,BC及AB的延長線于點F,G,H,連接HE,HC,OD,連接CO并延長交AD于點M.則下列結論中:

①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC

正確結論的個數有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.

(1)如圖①,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數量關系,并加以證明;

(2)如圖②,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D.

(1)求拋物線的函數解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,CPQ的面積為S.

①求S關于m的函數表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形的面積為28,對角線交于點;以、為鄰邊作平行四邊形,對角線交于點;以為鄰邊作平行四邊形;…依此類推,則平行四邊形的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側,DEAB,垂足為E,DE的延長線交此圓于點F.BGAD,垂足為G,BGDE于點H,DC,FB的延長線交于點P,且PC=PB.

(1)求證:BGCD;

(2)設△ABC外接圓的圓心為O,若AB=DH,OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設運動時間為x秒,PBQ的面積為y(cm2).

(1)求y關于x的函數關系式,并寫出x的取值范圍;

(2)求PBQ的面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形中,,,邊上一點,連接,將沿翻折,點的對應點是,連接,當是直角三角形時,則的值是________

查看答案和解析>>

同步練習冊答案