【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個(gè)結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( 。
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
【答案】B
【解析】根據(jù)題意,結(jié)合圖形,對選項(xiàng)一一求證,判定正確選項(xiàng)
解:在□ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等邊三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
DF=BC,∠CDF=∠EBC,CD=EB,
∴△CDF≌△EBC(SAS),故①正確;
在ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正確;
同理可證△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等邊三角形,故③正確;
當(dāng)CG⊥AE時(shí),∵△ABE是等邊三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°無法求出,故④錯(cuò)誤;
綜上所述,正確的結(jié)論有①②③.
故選B.
“點(diǎn)睛”本題考查了全等三角形的判定、等邊三角形的判定和性質(zhì)、平行線的性質(zhì)等知識,綜合性強(qiáng),考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,則P′A:PB=( )
A.1:
B.1:2
C. :2
D.1:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班45名學(xué)生的成績被分為5組,第1~4組的頻數(shù)分別為12,11,9,4,則第5組的頻率是( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為平行四邊形,AE⊥BD于E,CF⊥BD于F.
(1)求證:BE=DF;
(2)若 M、N分別為邊AD、BC上的點(diǎn),且DM=BN,試判斷四邊形MENF的形狀(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深化理解:
新定義:對非負(fù)實(shí)數(shù)x “四舍五入”到個(gè)位的值記為,
即:當(dāng)n為非負(fù)整數(shù)時(shí),如果;
反之,當(dāng)n為非負(fù)整數(shù)時(shí),如果
例如:<0> = <0.48> = 0,<0.64> = <1.49> = 1,<2> = 2,<3.5> = <4.12> = 4,……
試解決下列問題:
(1)填空:①=________(為圓周率); ②如果的取值范圍為____________________.
(2)若關(guān)于x的不等式組的整數(shù)解恰有3個(gè),求a的取值范圍.
(3)求滿足 的所有非負(fù)實(shí)數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好地治理小凌河水質(zhì),保護(hù)環(huán)境,市治污公司決定購買10臺污水處理設(shè)備,現(xiàn)有A 、B兩種設(shè)備,A 、B單價(jià)分別為a萬元/臺、 b萬元/臺,月處理污水分別為240噸/月、200噸/月,經(jīng)調(diào)查,買一臺A型設(shè)備比買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
(1)求a、b的值.
(2)經(jīng)預(yù)算,市治污公司購買污水處理器的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案?
(3)在(2)的條件下,若每月處理的污水不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)的一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,則∠BE′C=__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了直觀地表示我國體育健兒在最近八屆夏季奧運(yùn)會上獲得獎(jiǎng)牌總數(shù)的變化趨勢,最適合使用的統(tǒng)計(jì)圖是( 。
A.扇形圖B.折線圖C.條形圖D.直方圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(1,3),將矩形沿對角線AC翻折,B點(diǎn)落在D點(diǎn)的位置,且AD交y軸于點(diǎn)E.那么點(diǎn)D的坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com