【題目】2018年9月21日“鹽城大銅馬“順利回歸,如圖,小麗和小明決定用所學(xué)的知識測量大銅馬AB的高度,按照以下方式合作并記錄所得數(shù)據(jù):小明測得基座下部BE長為1.8米,基座BC高為6.12米,在E點處測得點F的仰角為80.72°,小麗沿直線BE步行到達(dá)點D處測得點A和點F的仰角分別為60.18°和50.75°,若A、B、C、D、E、F在同一平面內(nèi)且B、E、D和A、C、B分別在同一直線上,請分別求出CF和大銅馬AB的高度.(結(jié)果精確到0.01米,參考數(shù)據(jù)sin80.72°=0.987,cos80.72°=0.161,tan80.72°=6.12,sin60.18°=0.868,cos60.18°=0.497,tan60.18°=1.74,sin50.75°=0.774,cos50.75°=0.663,tan50.75°=1.224)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點D是BC邊上一動點,連接AD,把AD繞點A逆時針旋轉(zhuǎn)90°,得到AE,連接CE,DE.點F是DE的中點,連接CF.
(1)求證:;
(2)如圖2所示,在點D運動的過程中,當(dāng)時,分別延長CF,BA,相交于點G,猜想AG與BC存在的數(shù)量關(guān)系,并證明你猜想的結(jié)論;
(3)在點D運動的過程中,在線段AD上存在一點P,使的值最。(dāng)的值取得最小值時,AP的長為m,請直接用含m的式子表示CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點G與點A重合,點F在AD上,三角板的直角邊EF交BC于點M,反比例函數(shù)(x0)的圖象恰好經(jīng)過點F,M.若直尺的寬CD=2,三角板的斜邊FG=,則k=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長為6的等邊三角形.將△ABC繞點A逆時針旋轉(zhuǎn)角θ(0°θ180°)得到△ADE,BD和EC所在直線相交于點O.
(1)如圖1,當(dāng)0°θ60°時,∠BOC的度數(shù)是否變化?若不變,求出∠BOC的度數(shù);若變化,直接寫出∠BOC的度數(shù)的變化范圍;
(2)在旋轉(zhuǎn)過程中,當(dāng)△BDE是直角三角形時,求BD的長;
(3)在θ從60°到120°的旋轉(zhuǎn)過程中,直接寫出點O運動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是對角線BD上的一點,過點C作CQ∥DB,且CQ=DP,連接AP、BQ、PQ.
(1)求證:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求證:四邊形ABQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織健康知識競賽,每班參加競賽的人數(shù)相同,成績?yōu)?/span>,,,四個等級,其中相應(yīng)等級的得分依次記為100分,90分,80分,70分,其中100分和90分為優(yōu)秀.學(xué)校將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖與統(tǒng)計表.
一班競賽成績統(tǒng)計圖
二班競賽成績統(tǒng)計圖
一班和二班競賽成績統(tǒng)計表(部分空缺)
成績 班級 | 眾數(shù) | 中位數(shù) | 優(yōu)秀率 | 平均分 |
一班 | 90 | 87.6 | ||
二班 | 80 |
請根據(jù)以上圖表的信息解答下列問題:
(1)求,,的值.
(2)若全校共有750名學(xué)生參加競賽,估計成績優(yōu)秀的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)(、為參數(shù),其中)的圖象與軸交于、兩點,與軸交于點,頂點為.
(1)若,求的值(結(jié)果用含的式子表示);
(2)若是等腰三角形,直線與軸交于點,且.求拋物線的解析式;
(3)如圖,已知,、分別是和上的動點,且,若以為直徑的圓經(jīng)過點,并交軸于、兩點,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解該校八年級全體學(xué)生一周內(nèi)平均每天參加課外鍛煉的時間,從中隨機抽查了部分學(xué)生,并將抽查結(jié)果繪制成如下圖表:
分組 | 頻數(shù) | 頻率 |
9.5~19.5 | 2 | 0.05 |
19.5~29.5 | 4 | 0.1 |
29.5~39.5 | 10 | |
39.5~49.5 | 0.35 | |
49.5~59.5 | 7 | 0.175 |
59.5~69.5 | 3 | 0.075 |
(1)表中、表示的數(shù)分別為:________,_________;
(2)請補全頻數(shù)直方圖;
(3)如果該校八年級有800名學(xué)生,估計一下平均每天參加課外鍛煉達(dá)以上的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com