【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標系中,ABx軸上,點G與點A重合,點FAD上,三角板的直角邊EFBC于點M,反比例函數(shù)x0)的圖象恰好經(jīng)過點FM.若直尺的寬CD2,三角板的斜邊FG,則k____

【答案】

【解析】

通過作輔助線,構(gòu)造直角三角形,求出MNFN,進而求出AN、MB,表示出點F、點M的坐標,利用反比例函數(shù)k的意義,確定點F的坐標,進而確定k的值即可.

解:過點MMNAD,垂足為N,則MN=CD=2,

RtFMN中,∠MFN=30°

FN=MN=2,

AN=MB=-2=4

OA=x,則OB=x+2,

Fx,),Mx+2,4),

x=x+2×4,

解得,x=4,

F4,),

k=4×=,

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)k0)的圖象相交于AB兩點,與x軸相交于點C(4,0),且點B(3,n),連接OB

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)求△BOC的面積;

3)將直線AB向下平移,若平移后的直線與反比例函數(shù)的圖象只有一個交點,試說明直線AB向下平移了幾個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,長方形ABCD(每個內(nèi)角都是90°)的頂點的坐標分別是A0,m),Bn,0),(mn0),點EAD上,AEAB,點Fy軸上,OFOB,BF的延長線與DA的延長線交于點M,EFAB交于點N

1)試求點E的坐標(用含m,n的式子表示);

2)求證:AMAN;

3)若ABCD12cmBC20cm,動點PB出發(fā),以2cm/s的速度沿BCC運動的同時,動點QC出發(fā),以vcm/s的速度沿CDD運動,是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請求出v值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家具商場計劃購進某種餐桌、餐椅進行銷售,有關(guān)信息如下表:

原進價(元/張)

零售價(元/張)

成套售價(元/套)

餐桌

a

380

940

餐椅

160

已知用600元購進的餐椅數(shù)量與用1300元購進的餐桌數(shù)量相同.

1)求表中a的值;

2)該商場計劃購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.若將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售,請問怎樣進貨,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是第一象限內(nèi)橫坐標為的一個定點,ACx軸于點M,交直線y=﹣x于點N.若點P是線段ON上的一個動點,∠APB30°,BAPA,則點P在線段ON上運動時,A點不變,B點隨之運動.求當點P從點O運動到點N時,點B運動的路徑長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)設點P在矩形ABCD內(nèi)部,當點P到矩形的一條邊的兩個端點距離相等時,稱點P為該邊的和諧點.例如:如圖1,矩形ABCD中,若PAPD,則稱P為邊AD和諧點

(解題運用)已知,點P在矩形ABCD內(nèi)部,且AB=10,BC=6

1)設P是邊AD和諧點,則P BC和諧點(填不是);

2)若P是邊BC和諧點,連接PA,PB,當PAB是直角三角形時,求PA的值;

3)如圖2,若P是邊AD和諧點,連接PA,PBPD,求tan∠PAB· tan∠PBA的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018921日“鹽城大銅馬“順利回歸,如圖,小麗和小明決定用所學的知識測量大銅馬AB的高度,按照以下方式合作并記錄所得數(shù)據(jù):小明測得基座下部BE長為1.8米,基座BC高為6.12米,在E點處測得點F的仰角為80.72°,小麗沿直線BE步行到達點D處測得點A和點F的仰角分別為60.18°和50.75°,若AB、C、DE、F在同一平面內(nèi)且BE、DA、C、B分別在同一直線上,請分別求出CF和大銅馬AB的高度.(結(jié)果精確到0.01米,參考數(shù)據(jù)sin80.72°=0.987,cos80.72°=0.161tan80.72°=6.12,sin60.18°=0.868,cos60.18°=0.497,tan60.18°=1.74,sin50.75°=0.774,cos50.75°=0.663,tan50.75°=1.224

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長為8cm,寬4cm的矩形紙片ABCD折疊,使點AC重合,則折痕EF的長為(  )

A.8cmB.4cmC.5cmD.2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在信息快速發(fā)展的社會,信息消費已成為人們生活的重要組成部分,某高校組織課外小組在我市的一個社區(qū)隨機抽取部分家庭,調(diào)查每月用于信息消費的金額,根據(jù)數(shù)據(jù)整理成如下不完整統(tǒng)計表和統(tǒng)計圖(如圖).已知,兩組戶數(shù)頻數(shù)宜方圖的高度比為15

月信息消費額分組統(tǒng)計表

組別

消費額/

請結(jié)合圖表中相關(guān)數(shù)據(jù)解答下列問題:

1)這次接受調(diào)查的有_________戶;

2請你補全頻數(shù)直方圖;

3)以各組組中值代表本組的月信息消費額的平均數(shù),計算課外小組抽取家庭的月信息消費額的平均數(shù);

4)若該社區(qū)有2000戶住戶,請估計月信息消費額不少于200元的戶數(shù)是多少?

查看答案和解析>>

同步練習冊答案