【題目】如圖所示,(1)正方形ABCD及等腰RtAEF有公共頂點A,EAF90°, 連接BE、DF.RtAEF繞點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;

(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰RtAEF變?yōu)?/span>RtAEF,且ADkAB,AFkAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;

(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將RtAEF變?yōu)?/span>AEF,且∠BADEAF,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.

【答案】1DF=BEDFBE,證明見解析;(2)數(shù)量關(guān)系改變,位置關(guān)系不變,即DF=kBE,DFBE;(3)不改變.DF=kBEβ=180°-α

【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的過程中線段的長度不變,得到AF=AE,又∠BAE∠DAF都與∠BAF互余,所以∠BA E=∠DAF,所以△FAD≌△EAB,因此BEDF相等,延長DFBEG,根據(jù)全等三角形的對應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因為矩形的鄰邊不相等,但根據(jù)題意,可以得到對應(yīng)邊成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根據(jù)相似三角形的對應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EHF=90°,所以DF⊥BE;

3)與(2)的證明方法相同,但根據(jù)相似三角形的對應(yīng)角相等和四邊形的內(nèi)角和等于360°求出∠EAF+∠EHF=180°,所以DFBE的夾角β=180°-α

試題解析:(1DFBE互相垂直且相等.

證明:延長DF分別交AB、BE于點P、G

在正方形ABCD和等腰直角△AEF

AD=AB,AF=AE,

∠BAD=∠EAF=90°

∴∠FAD=∠EAB

∴△FAD≌△EAB2分)

∴∠AFD=∠AEB,DF="BE"

∵∠AFD+∠AFG=180°,

∴∠AEG+∠AFG=180°,

∵∠EAF=90°,

∴DF⊥BE

2)數(shù)量關(guān)系改變,位置關(guān)系不變.DF=kBEDF⊥BE

延長DFEB于點H

∵AD=kAB,AF="kAE"

,

∵∠BAD=∠EAF="a"

∴∠FAD=∠EAB

∴△FAD∽△EAB

∴DF="kBE"

∵△FAD∽△EAB

∴∠AFD=∠AEB,

∵∠AFD+∠AFH=180°,

∴∠AEH+∠AFH=180°,

∵∠EAF=90°,

∴∠EHF=180°-90°=90°,

∴DF⊥BE

3)不改變.DF=kBEβ=180°-a

延長DFEB的延長線于點H,

∵AD=kAB,AF="kAE"

,

∵∠BAD=∠EAF="a"

∴∠FAD=∠EAB

∴△FAD∽△EAB

∴DF=kBE

△FAD∽△EAB∠AFD=∠AEB

∵∠AFD+∠AFH=180°

∴∠AEB+∠AFH=180°

四邊形AEHF的內(nèi)角和為360°

∴∠EAF+∠EHF=180°

∵∠EAF=α,∠EHF=β

∴a+β=180°∴β=180°-a

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】前年,某大型工業(yè)企業(yè)落戶萬州,相關(guān)建設(shè)隨即展開.到去年年底,工程進入到設(shè)備安裝階段.在該企業(yè)的采購計劃中,有A、B、C三種生產(chǎn)設(shè)備.若購進3A7B,1套丙,需資金63萬元;若購進4A,10B,1套丙,需資金84萬元.現(xiàn)在打算同時購進AB、C10套,共需資金___________________萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個正比例函數(shù)的圖像與反比例函數(shù)交于Ax1y1),Bx2y2),那么(x1-x2)(y1-y2=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《廣州市初中學(xué)業(yè)水平考試體育與健康考試實施意見(征求意見稿)》,年的廣州市體育中考將要求考生在足球、排球、籃球三個項目中任選一項參加考試.某校數(shù)學(xué)興趣小組的同學(xué)為了解本校初一學(xué)生對足球、排球、籃球這三大球類運動項目的選考情況,抽取了部分學(xué)生進行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)求此次抽樣調(diào)查的樣本容量;

2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中足球部分的圓心角度數(shù);

3)如果這所學(xué)校初一學(xué)生共人,請你估計該校初一有多少名學(xué)生選擇排球項目參加體育中考?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)用“=”、“>”、“<”填空

; 6+3 ; ;7+7

(2)由(1)中各式猜想a+b與的大小,并說明理由.

(3)請利用上述結(jié)論解決下面問題:

某同學(xué)在做一個面積為1800cm2,對角線互相垂直的四邊形風(fēng)箏時,求用來做對角線的竹條至少要多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點OOAB是等邊三角形.

1)求證:ABCD為矩形;

2)若AB4,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

根據(jù)城市規(guī)劃設(shè)計,某市工程隊準備為該城市修建一條長4800米的公路.鋪設(shè)600米后,為了盡量減少施工對城市交通造成的影響,該工程隊增加人力,實際每天修建公路的長度是原計劃的2倍,結(jié)果9天完成任務(wù),該工程隊原計劃每天鋪設(shè)公路多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列, ,01,236個數(shù)中任取一個數(shù)記作,放回去再從這六個數(shù)中任意取一個數(shù)記作,則使得分式方程有整數(shù)解,且使得函數(shù)的圖象經(jīng)過第一三四象限的所有的值有 ).

A. 2 B. 4 C. 5 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A2,0),B0,4),若以BO,C為頂點的三角形與△ABO全等,則點C的坐標(biāo)不能為( 。

A.0,﹣4B.(﹣2,0C.24D.(﹣24

查看答案和解析>>

同步練習(xí)冊答案