【題目】我國(guó)魏晉時(shí)期著名的數(shù)學(xué)家劉徽在《九章算術(shù)》中提出了“割圓術(shù)——割之彌細(xì),所失彌少,隔之又割,以至不可割,則與圓周合體,而無(wú)所失也.”也就是利用圓的內(nèi)接多邊形逐步逼近圓的方法來(lái)近似計(jì)算圓的面積和周長(zhǎng).如圖1,若用圓的內(nèi)接正六邊形的面積來(lái)近似估計(jì)半徑為1的⊙O的面積,再用如圖2的圓的內(nèi)接正十二邊形的面積來(lái)近似估計(jì)半徑為1的⊙O的面積,則____(結(jié)果保留根號(hào))

【答案】

【解析】

根據(jù)正多邊形的性質(zhì)分別求出S1,S2即可解決問(wèn)題.

解:如圖1,過(guò)點(diǎn)O作OE⊥AB于點(diǎn)E.如圖2,過(guò)點(diǎn)D作DF⊥OC.

如圖1,由題意,知三角形ABO是等邊三角形,∴OA=OB=AB=1,AE=BE=,EO=.

S1=6××1=,

如圖2,由題意,知∠COD=30°,CO=OD=1,FD=DO=.

S2=12××1×=3.
S2-S1=3-
故答案為:3-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD中,ABBC,點(diǎn)M從點(diǎn)D出發(fā),沿DCA1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)M運(yùn)動(dòng)時(shí),△MAB的面積ycm2)隨時(shí)間xs)變化的關(guān)系圖象,則邊AB的長(zhǎng)為( 。cm

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解同學(xué)們最喜歡一年四季中的哪個(gè)季節(jié),數(shù)學(xué)社在全校隨機(jī)抽取部分同學(xué)進(jìn)行問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果,得到如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息,解答下列問(wèn)題:

1)此次調(diào)查一共隨機(jī)抽取了________名同學(xué);扇形統(tǒng)計(jì)圖中,“春季”所對(duì)應(yīng)的扇形的圓心角的度數(shù)為________;

2)若該學(xué)校有1500名同學(xué),請(qǐng)估計(jì)該校最喜歡冬季的同學(xué)的人數(shù);

3)現(xiàn)從最喜歡夏季的3名同學(xué)AB,C中,隨機(jī)選兩名同學(xué)去參加學(xué)校組織的“我愛(ài)夏天”演講比賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好選到AB去參加比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)計(jì)劃在每個(gè)生產(chǎn)周期內(nèi)生產(chǎn)并銷(xiāo)售完某型設(shè)備,設(shè)備的生產(chǎn)成本為10萬(wàn)元/件(1)如圖,設(shè)第x0x20)個(gè)生產(chǎn)周期設(shè)備售價(jià)z萬(wàn)元/件,zx之間的關(guān)系用圖中的函數(shù)圖象表示,求z關(guān)于x的函數(shù)解析式(寫(xiě)出x的范圍).

2)設(shè)第x個(gè)生產(chǎn)周期生產(chǎn)并銷(xiāo)售的設(shè)備為y件,yx滿(mǎn)足關(guān)系式y=5x+400x20).在(1)的條件下,工廠(chǎng)在第幾個(gè)生產(chǎn)周期創(chuàng)造的利潤(rùn)最大?最大為多少萬(wàn)元?(利潤(rùn)=收入-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線(xiàn))與雙曲線(xiàn)交于兩點(diǎn)(點(diǎn)在第一象限),直線(xiàn))與雙曲線(xiàn)交于兩點(diǎn).當(dāng)這兩條直線(xiàn)互相垂直,且四邊形的周長(zhǎng)為時(shí),點(diǎn)的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)與兩條坐標(biāo)軸分別交于,三點(diǎn).其中,且

1)求該拋物線(xiàn)的解析式;

2)點(diǎn)軸上一點(diǎn),拋物線(xiàn)上是否存在點(diǎn),使得以點(diǎn),,為頂點(diǎn),以為邊的四邊形是平行四邊形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)如圖2,點(diǎn)分別是線(xiàn)段,上的動(dòng)點(diǎn),連接,,當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以為直徑的與邊,分別交于兩點(diǎn),過(guò)點(diǎn)于點(diǎn)

1)判斷的位置關(guān)系,并說(shuō)明理由;

2)求證:的中點(diǎn);

3)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn),是第一象限角平分線(xiàn)上的兩點(diǎn),點(diǎn)的縱坐標(biāo)為1,且,在軸上取一點(diǎn),連接,,,,使得四邊形的周長(zhǎng)最小,這個(gè)最小周長(zhǎng)的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖為我市某校2015年參加各類(lèi)比賽(包括圍棋、書(shū)法、繪畫(huà)、鋼琴四個(gè)類(lèi)別)的參賽人數(shù)統(tǒng)計(jì)圖:

1)該校參加比賽的總?cè)藬?shù)是 人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖中,該校參加圍棋所對(duì)應(yīng)的圓心角的度數(shù)是

3)從全市中小學(xué)參加比賽選手中隨機(jī)抽取60人,其中有20人獲獎(jiǎng).今年我市中小學(xué)參加比賽人數(shù)共有2400人,請(qǐng)你估算今年參加繪畫(huà)比賽的人數(shù)以及參加比賽獲獎(jiǎng)的總?cè)藬?shù)約是多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案