【題目】如圖,在直角坐標系中,點,是第一象限角平分線上的兩點,點的縱坐標為1,且,在軸上取一點,連接,,,,使得四邊形的周長最小,這個最小周長的值為________.
【答案】
【解析】
先求出AC=BC=2,作點B關于y軸對稱的點E,連接AE,交y軸于D,此時AE=AD+BD,且AD+BD值最小,即此時四邊形的周長最。蛔FG∥y軸,AG∥x軸,交于點G,則GF⊥AG,根據(jù)勾股定理求出AE即可.
解:∵,點的縱坐標為1,
∴AC∥x軸,
∵點,是第一象限角平分線上的兩點,
∴∠BAC=45°,
∵,
∴∠BAC=∠ABC=45°,
∴∠C=90°,
∴BC∥y軸,
∴AC=BC=2,
作點B關于y軸對稱的點E,連接AE,交y軸于D,此時AE=AD+BD,且AD+BD值最小,
∴此時四邊形的周長最小,
作FG∥y軸,AG∥x軸,交于點G,則GF⊥AG,
∴EG=2,GA=4,
在Rt△AGE中,
,
∴ 四邊形的周長最小值為2+2+=4+ .
科目:初中數(shù)學 來源: 題型:
【題目】每年夏季全國各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年我校為確保學生安全,開展了“遠離溺水珍愛生命”的防溺水安全知識競賽.現(xiàn)從七、八年級中各隨機抽取10名學生的競賽成績(百分制)進行整理、描述和分析(成績得分用x表示,共分成四組:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面給出了部分信息:
七年級10名學生的競賽成績是:99,80,99,86,99,96,90,100,89,82 ;
八年級10名學生的競賽成績在C組中的數(shù)據(jù)是:92,90,94.
七、八年級抽取的學生競賽成績統(tǒng)計表
根據(jù)以上信息,解答下列問題:
(1)上述圖表中a=______,b=______,c=______;
(2) 我校七、八年級共400人參加了此次競賽活動,估計參加此次競賽活動成績優(yōu)秀(x≥90)的學生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國魏晉時期著名的數(shù)學家劉徽在《九章算術》中提出了“割圓術——割之彌細,所失彌少,隔之又割,以至不可割,則與圓周合體,而無所失也.”也就是利用圓的內(nèi)接多邊形逐步逼近圓的方法來近似計算圓的面積和周長.如圖1,若用圓的內(nèi)接正六邊形的面積來近似估計半徑為1的⊙O的面積,再用如圖2的圓的內(nèi)接正十二邊形的面積來近似估計半徑為1的⊙O的面積,則____.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】4月23日是世界讀書日,校文學社為了解學生課外閱讀的情況,抽樣調(diào)查了部分學生每周用于課外閱讀的時間,過程如下:
收集數(shù)據(jù):從學校隨機抽取20名,進行了每周用于課外閱讀時間的調(diào)查,數(shù)據(jù)如下(單位:):
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
整理數(shù)據(jù):按如下分數(shù)段整理樣本數(shù)據(jù)并補全表格:
等級 | ||||
人數(shù) | 3 | 8 | 4 |
分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:
平均數(shù) | 中位數(shù) | 眾數(shù) |
80 |
得出結論:
(1)請寫出表中_________;_________;__________;
(2)如果該校現(xiàn)有學生7500人,估計等級為“”的學生有_________名;
(3)假設平均閱讀一本課外書的時間為,請你選擇一種統(tǒng)計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學探究活動中,敏敏進行了如下操作:如圖,將四邊形紙片沿過點的直線折疊,使得點落在上的點處,折痕為;再將分別沿折疊,此時點落在上的同一點處.請完成下列探究:
的大小為__________;
當四邊形是平行四邊形時的值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABC中,AB=BC,以△ABC的邊AB為直徑作⊙O,交AC于點D,過點D作DE⊥BC,垂足為點E.
(1)試證明DE是⊙O的切線;
(2)若⊙O的半徑為5,AC=6,求此時DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙C過菱形ABCD的三個頂點B,A,D,連結BD,過點A作AE∥BD交射線CB于點E.
(1)求證:AE是⊙C的切線.
(2)若半徑為2,求圖中線段AE、線段BE和圍成的部分的面積.
(3)在(2)的條件下,在⊙C上取點F,連結AF,使∠DAF=15°,求點F到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過使用手機app購票,智能閘機、手持驗票機驗票的方式,能夠大大縮短游客排隊購票、驗票的等待時間,且操作極其簡單,已知某公園采用新的售票、驗票方式后,平均每分鐘接待游客的人數(shù)是原來的10倍,且接待5000名游客的入園時間比原來接待600名游客的入園時間還少5分鐘,求該公園原來平均每分鐘接待游客的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,BC=4,且AB=,連接對角線AC,點E為AC中點,點F為線段AB上的動點,連接EF,作點C關于EF的對稱點C',連接C'E,C'F,若△EFC'與△ACF的重疊部分(△EFG)面積等于△ACF的,則BF=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com