2.重視通性通法,加強(qiáng)解題指導(dǎo),提高解題能力
在二輪復(fù)習(xí)中,不能僅僅復(fù)習(xí)概念和性質(zhì),還應(yīng)該以典型的例題和習(xí)題(可以選用04年的各地高考試題和近兩年的各地高考模擬試題)為載體,在二輪復(fù)習(xí)中強(qiáng)化各類問題的常規(guī)解法,使學(xué)生形成解決各種類型問題的操作范式.?dāng)?shù)學(xué)學(xué)習(xí)是學(xué)生自主學(xué)習(xí)的過程,解題能力只有通過學(xué)生的自主探究才能掌握.所以,在二輪復(fù)習(xí)中,教師的作用是對學(xué)生的解題方法進(jìn)行引導(dǎo)、點(diǎn)撥和點(diǎn)評,只有這樣,才能夠?qū)嵤┯行?fù)習(xí).
1.根據(jù)學(xué)生的實(shí)際,有針對性地進(jìn)行復(fù)習(xí),提高復(fù)習(xí)的有效性
由于解析幾何通常有2-3小題和1大題,約占28分左右,而小題以考查基礎(chǔ)為主、解答題的第一問也較容易,因此,對于全市的所有不同類型的學(xué)校,都要做好該專題的復(fù)習(xí),千萬不能認(rèn)為該部分內(nèi)容較難而放棄對該部分內(nèi)容的專題復(fù)習(xí),并且根據(jù)生源狀況有針對性地進(jìn)行復(fù)習(xí),提高復(fù)習(xí)的有效性.
3.命題的熱點(diǎn):
(1)與其他知識進(jìn)行綜合,在知識網(wǎng)絡(luò)的交匯處設(shè)計(jì)試題(如與向量綜合,與數(shù)列綜合、與函數(shù)、導(dǎo)數(shù)及不等式綜合等);
(2)直線與圓錐曲線的位置關(guān)系,由于該部分內(nèi)容體現(xiàn)解析幾何的基本思想方法――用代數(shù)的手段研究幾何問題,因此該部分內(nèi)容一直是考試的熱點(diǎn),相信,在05年的考試中將繼續(xù)體現(xiàn);
(3)求軌跡方程.
(4)應(yīng)用題.
2.命題內(nèi)容:從今年各地的試題以及前幾年的試題來看,解答題所考查的內(nèi)容基本上是橢圓、雙曲線、拋物線交替出現(xiàn)的,所以,今年極有可能考雙曲線的解答題.此外,從命題所追求的目標(biāo)來看,小題所涉及的內(nèi)容一定會注意到知識的覆蓋,兼顧到對能力的要求.
1.難度:解析幾何內(nèi)容是歷年來高考數(shù)學(xué)試題中能夠拉開成績差距的內(nèi)容之一,該部分試題往往有一定的難度和區(qū)分度,預(yù)計(jì)這一形式仍將在05年的試題中得到體現(xiàn).此外,從04年分。ㄊ校┟}的情況來看,在文科類15份試卷(含文理合用的試卷)中,有9分試卷(占3/5)用解析幾何大題作為最后一道壓軸題,預(yù)計(jì)這一現(xiàn)狀很有可能在05年試卷中繼續(xù)重現(xiàn).
5.重視應(yīng)用
在歷年的高考試題中,經(jīng)常出現(xiàn)解析幾何的應(yīng)用題,如01年的天津理科試題、03年的上海文理科試題、03年全國文科舊課程卷試題、03年的廣東試題及江蘇的線性規(guī)劃題等,都是有關(guān)解析幾何的應(yīng)用題.
例11(04年廣東試題)某中心接到其正東、正西、正北方向三個(gè)觀測點(diǎn)的報(bào)告:正西、正北兩個(gè)觀測點(diǎn)同時(shí)聽到了一聲巨響,正東觀測點(diǎn)聽到的時(shí)間比其他兩觀測點(diǎn)晚4s. 已知各觀測點(diǎn)到該中心的距離都是1020m. 試確定該巨響發(fā)生的位置.(假定當(dāng)時(shí)聲音傳播的速度為340m/ s :相關(guān)各點(diǎn)均在同一平面上)
解:如圖,以接報(bào)中心為原點(diǎn)O,正東、正北方向?yàn)閤軸、y軸正向,建立直角坐標(biāo)系.設(shè)A、B、C分別是西、東、北觀測點(diǎn),則A(-1020,0),B(1020,0),C(0,1020)
設(shè)P(x,y)為巨響為生點(diǎn),由A、C同時(shí)聽到巨響聲,得|PA|=|PB|,故P在AC的垂直平分線PO上,PO的方程為y=-x,因B點(diǎn)比A點(diǎn)晚4s聽到爆炸聲,故|PB|- |PA|=340×4=1360
由雙曲線定義知P點(diǎn)在以A、B為焦點(diǎn)的雙曲線上,
依題意得a=680, c=1020,
用y=-x代入上式,得,∵|PB|>|PA|,
答:巨響發(fā)生在接報(bào)中心的西偏北450距中心處.
(二)05年高考預(yù)測
4.與導(dǎo)數(shù)相綜合
近幾年的新課程卷也十分注意與導(dǎo)數(shù)的綜合,如03年的天津文科試題、04年的湖南文理科試題,都分別與向量綜合.
例10(04年湖南文理科試題)如圖,過拋物線x2=4y的對稱軸上任一點(diǎn)P(0,m)(m>0)作直線與拋物線交于A,B兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)。
(I)設(shè)點(diǎn)P分有向線段所成的比為,證明:
(II)設(shè)直線AB的方程是x-2y+12=0,過A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.
解:(Ⅰ)依題意,可設(shè)直線AB的方程為 代入拋物線方程得 ①
設(shè)A、B兩點(diǎn)的坐標(biāo)分別是 、、x2是方程①的兩根.
所以
由點(diǎn)P(0,m)分有向線段所成的比為,得
又點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn),故點(diǎn)Q的坐標(biāo)是(0,-m),從而.
所以
(Ⅱ)由 得點(diǎn)A、B的坐標(biāo)分別是(6,9)、(-4,4).
由 得 所以拋物線 在點(diǎn)A處切線的斜率為
設(shè)圓C的方程是則
解之得
所以圓C的方程是 即
3.與數(shù)列相綜合
在04年的高考試題中,上海、湖北、浙江解析幾何大題與數(shù)列相綜合,此外,03年的江蘇卷也曾出現(xiàn)過此類試題,所以,在05年的試題中依然會出現(xiàn)類似的問題.
例9(04年浙江卷)如圖,ΔOBC的在個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),
(Ⅰ)求及;
(Ⅱ)證明
(Ⅲ)若記證明是等比數(shù)列.
解:(Ⅰ)因?yàn),所以,又由題意可知,
∴== ∴為常數(shù)列.∴
(Ⅱ)將等式兩邊除以2,得
又∵,∴
(Ⅲ)∵
又∵
∴是公比為的等比數(shù)列.
2.考查直線與圓錐曲線的位置關(guān)系幾率較高
在04年的15個(gè)省市文科試題(含新、舊課程卷)中,全都“不約而同”地考查了直線和圓錐曲線的位置關(guān)系,因此,可以斷言,在05年高考試題中,解析幾何的解答題考查直線與圓錐曲線的位置關(guān)系的概率依然會很大.
1.重視與向量的綜合
在04年高考文科12個(gè)省市新課程卷中,有6個(gè)省市的解析幾何大題與向量綜合,主要涉及到向量的點(diǎn)乘積(以及用向量的點(diǎn)乘積求夾角)和定比分點(diǎn)等,因此,與向量綜合,仍是解析幾何的熱點(diǎn)問題,預(yù)計(jì)在05年的高考試題中,這一現(xiàn)狀依然會持續(xù)下去.
例7(02年新課程卷)平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(3,1),B(-1,3),若點(diǎn)C滿足,其中a、b∈R,且a+b=1,則點(diǎn)C的軌跡方程為
(A)(x-1)2+(y-2)2=5 (B)3x+2y-11=0
(C)2x-y=0 (D)x+2y-5=0
例8(04遼寧)已知點(diǎn)、,動(dòng)點(diǎn),則點(diǎn)P的軌跡是
(A)圓 (B)橢圓 (C)雙曲線 (D)拋物線
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com