例6.數(shù)列中,且滿足
⑴求數(shù)列的通項公式;
⑵設(shè),求;
⑶設(shè)=,是否存在最大的整數(shù),使得對任意,均有成立?若存在,求出的值;若不存在,請說明理由。
解:(1)由題意,,為等差數(shù)列,設(shè)公差為,
由題意得,.
(2)若,
時,
(3)
若對任意成立,即對任意成立,
的最小值是,的最大整數(shù)值是7。
即存在最大整數(shù)使對任意,均有
說明:本例復(fù)習數(shù)列通項,數(shù)列求和以及有關(guān)數(shù)列與不等式的綜合問題。.
五、強化訓練
(一)用基本量方法解題
例5.在直角坐標平面上有一點列,對一切正整數(shù),點位于函數(shù)的圖象上,且的橫坐標構(gòu)成以為首項,為公差的等差數(shù)列。
⑴求點的坐標;
⑵設(shè)拋物線列中的每一條的對稱軸都垂直于軸,第條拋物線的頂點為,且過點,記與拋物線相切于的直線的斜率為,求:。
⑶設(shè),等差數(shù)列的任一項,其中是中的最大數(shù),,求的通項公式。
解:(1)
(2)的對稱軸垂直于軸,且頂點為.設(shè)的方程為:
把代入上式,得,的方程為:。
,
=
(3),
T中最大數(shù).
設(shè)公差為,則,由此得
說明:本例為數(shù)列與解析幾何的綜合題,難度較大(1)、(2)兩問運用幾何知識算出,解決(3)的關(guān)鍵在于算出及求數(shù)列的公差。
例4、(04年重慶)設(shè)a1=1,a2=,an+2=an+1-an (n=1,2,---),令bn=an+1-an (n=1,2---)求數(shù)列{bn}的通項公式,(2)求數(shù)列{nan}的前n項的和Sn。
解:(I)因
故{bn}是公比為的等比數(shù)列,且
(II)由
注意到可得
記數(shù)列的前n項和為Tn,則
例3.(04年浙江)設(shè)數(shù)列{an}的前項的和Sn=(an-1) (n+),(1)求a1;a2; (2)求證數(shù)列{an}為等比數(shù)列。
解: (Ⅰ)由,得 ∴ 又,即,得.
(Ⅱ)當n>1時,
得所以是首項,公比為的等比數(shù)列.
2.解綜合題要總攬全局,尤其要注意上一問的結(jié)論可作為下面論證的已知條件,在后面求解的過程中適時應(yīng)用.
說明:1.本例主要復(fù)習用等差、等比數(shù)列的定義證明一個數(shù)列為等差,等比數(shù)列,求數(shù)列通項與前項和。解決本題的關(guān)鍵在于由條件得出遞推公式。
綜上可知,所求的求和公式為S=2(3n-4)+2.
由①和②得,數(shù)列是首項為3,公比為2的等比數(shù)列,故b=3?2.
當n≥2時,S=4a+2=2(3n-4)+2;當n=1時,S=a=1也適合上式.
例2.已知數(shù)列中,是其前項和,并且,
⑴設(shè)數(shù)列,求證:數(shù)列是等比數(shù)列;
⑵設(shè)數(shù)列,求證:數(shù)列是等差數(shù)列;
⑶求數(shù)列的通項公式及前項和。
分析:由于和{c}中的項都和{a}中的項有關(guān),{a}中又有S=4a+2,可由S-S作切入點探索解題的途徑.
解:(1)由S=4a,S=4a+2,兩式相減,得S-S=4(a-a),即a=4a-4a.(根據(jù)b的構(gòu)造,如何把該式表示成b與b的關(guān)系是證明的關(guān)鍵,注意加強恒等變形能力的訓練)
a-2a=2(a-2a),又b=a-2a,所以b=2b ①
已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 ②
例1.已知數(shù)列{a}是公差d≠0的等差數(shù)列,其前n項和為S.
(2)過點Q(1,a),Q(2,a)作直線12,設(shè)l與l的夾角為θ,
證明:(1)因為等差數(shù)列{a}的公差d≠0,所以
Kpp是常數(shù)(k=2,3,…,n).
(2)直線l的方程為y-a=d(x-1),直線l的斜率為d.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com