已知函數(shù)y=f(2x+1)的定義域為[1,2],則函數(shù)y=f(2x-1)的定義域為( 。
A、[3,5]
B、[0,
1
2
]
C、[2,3]
D、[5,9]
考點:函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)y=f(2x+1)的定義域為[1,2]求出2x+1的范圍得到函數(shù)f(x)的定義域,再由2x-1在f(x)的定義域范圍內(nèi)求得x的取值范圍得到函數(shù)y=f(2x-1)的定義域.
解答: 解:∵函數(shù)y=f(2x+1)的定義域為[1,2],
即1≤x≤2,
∴3≤2x+1≤5.
即函數(shù)y=f(x)的定義域為[3,5].
則由3≤2x-1≤5,得2≤x≤3.
∴函數(shù)y=f(2x-1)的定義域為[2,3].
故選:C.
點評:本題考查了函數(shù)定義域及其求法,關(guān)鍵是熟練掌握該類問題的解決方法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x-a)2lnx,a∈R.若x=e為y=f(x)的極值點,求實數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2+4x-a,若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)存在零點,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=2,(n+1)an=Sn+n3+n2,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線L1:mx+(m-1)y+5=0,L2:(m+2)x+my-1=0且L1⊥L2,則m的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2-x-(m+1)=0在[-1,1]上有解,則m的取值范圍是( 。
A、-1≤m≤1
B、m≥-
5
4
C、m≤1
D、-
5
4
≤m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
a
,
b
滿足|
a
-k
b
|=λ|k
a
+
b
|,其中k>0,記函數(shù)f(λ)=
a
b
,1≤λ≤
3
,當(dāng)f(λ)取得最小值時,與向量
b
垂直的向量可以是(  )
A、
a
+2
b
B、
a
+
1
3
b
C、
a
-
3
2
b
D、
a
-
3
4
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}定義如下:a1=1,a2=2,an+2=
2(n+1)
n+2
an+1-
n
n+2
an,n=1,2,…,若am>2+
2011
2012
,則正整數(shù)m的最小值為( 。
A、4025B、4250
C、3650D、4425

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=6,BC=2
3
,沿對角線BD將△ABD向上折起,使點A移至點P,且點P在平面BCD內(nèi)的投影O在CD上.
(1)求二面角P-DB-C的正弦值;
(2)求點C到平面PBD的距離.

查看答案和解析>>

同步練習(xí)冊答案