設(shè)函數(shù)f(x)=(x-a)2lnx,a∈R.若x=e為y=f(x)的極值點(diǎn),求實(shí)數(shù)a.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由x=e為y=f(x)的極值點(diǎn),可得f′(e)=0,再驗(yàn)證即可.
解答: 解:f′(x)=2(x-a)lnx+
(x-a)2
x
,
∵x=e為y=f(x)的極值點(diǎn),
∴f′(e)=2(e-a)+
(e-a)2
e
=0,化為(e-a)(a-3e)=0,
解得a=e或a=3e.
此時(shí)f′(x)=2(x-3e)+
(x-3e)2
x
=
3(x-3e)(x-e)
x

可知:滿足x=e是函數(shù)f(x)的極值點(diǎn).
∴a=e或a=3e.
點(diǎn)評(píng):本題考查了函數(shù)取得極值的充要條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等差數(shù)列,a1=1,公差d=2,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且b1=1,a3+b5=21.
(1)求{bn}的通項(xiàng)公式;
(2)求數(shù)列{
an
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+blnx(a,b∈R)
(1)當(dāng)a=-3,b=1時(shí),求f(x)的極小值;
(2)當(dāng)b=-1時(shí),過(guò)坐標(biāo)原點(diǎn)O作曲線y=f(x)的切線,求證:切點(diǎn)的橫坐標(biāo)為1;
(3)當(dāng)a=0,b=1時(shí),g(x)=[f(x)-x2-1]ex+x,是否存在實(shí)數(shù)x0∈(0,+∞),使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=f′(1)ex-1-f(0)x+
1
2
x2,其中e是自然對(duì)數(shù)的底數(shù),f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)g(x)=
1
2
x2+a與函數(shù)f(x)的圖象在區(qū)間[-1,2]上恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,曲線段OMB是函數(shù)f(x)=x2(0<x<60)的圖象,BA⊥x軸于A,曲線段OMB上一點(diǎn)M(t,f(t))處的切線PQ交x軸于P,交線段AB于Q,
(1)試用t表示切線PQ的方程;
(2)試用t表示出△QAP的面積g(t);若函數(shù)g(t)在(m,n)上單調(diào)遞減,試求出m的最小值;
(3)若S△QAP∈[
121
4
,64]試求出點(diǎn)P橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={0,1,2,3,4,5,6},A={0,1,2,3,4,5,6},求∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的導(dǎo)數(shù)f′(x)=(x-
5
2
)(x-k)k,k≥1,k∈Z,已知x=k是函數(shù)f(x)的極大值點(diǎn),則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M滿足{1,2}⊆M?{1,2,3,4,5},那么這樣的集合M有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(2x+1)的定義域?yàn)閇1,2],則函數(shù)y=f(2x-1)的定義域?yàn)椋ā 。?/div>
A、[3,5]
B、[0,
1
2
]
C、[2,3]
D、[5,9]

查看答案和解析>>

同步練習(xí)冊(cè)答案