設(shè)F1,F(xiàn)2是橢圓C:的兩個焦點,若在C上存在一點P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為_____________.

試題分析:因為PF1⊥PF2,且∠PF1F2=30°,所以PF1=,PF2=,又PF1+PF2=2a,所以2a==.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點為圓心、橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;
(2)如圖,、是橢圓的頂點,是橢圓上除頂點外的任意點,直線軸于點,直線于點,設(shè)的斜率為,的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1上任一點P,由點Px軸作垂線PQ,垂足為Q,設(shè)點MPQ上,且=2,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設(shè)N是過點且平行于x軸的直線上一動點,且滿足 (O為原點),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點是橢圓上的一動點,為橢圓的兩個焦點,是坐標原點,若的角平分線上的一點,且,則的取值范圍為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的中心在原點,一個焦點與拋物線的焦點重合,一個頂點的坐標為,則此橢圓方程為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

當0 < a < 1時,方程=1表示的曲線是 (   )
A.圓B.焦點在x軸上的橢圓
C.焦點在y軸上的橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是 (  )
A.2    B.6  C.4  D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓(a>b>0)的離心率為,過右焦點且斜率為(k>0)的直線于相交于、兩點,若,則 =(  )
A.1B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P是以F1,F(xiàn)2為焦點的橢圓上的任意一點,若∠PF1F2=α,∠PF2F1=β,且cosα=,sin(α+β)=,則此橢圓的離心率為       

查看答案和解析>>

同步練習冊答案