當0 < a < 1時,方程=1表示的曲線是 (   )
A.圓B.焦點在x軸上的橢圓
C.焦點在y軸上的橢圓D.雙曲線
B

試題分析:由,又,由橢圓的性質(zhì)得焦點在x軸上,故選B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)過F1的直線l與橢圓C相交于A,B兩點,且的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓中心在坐標原點,焦點在x軸上,離心率為,它的一個頂點為拋物線x2=4y的焦點.
(1)求橢圓方程;
(2)若直線yx-1與拋物線相切于點A,求以A為圓心且與拋物線的準線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點,求△OMN面積的最大值(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,橢圓的離心率,左焦點為F,為其三個頂點,直線CF與AB交于點D,則的值等于        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的弦被點平分,則此弦所在的直線方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)F1,F(xiàn)2是橢圓C:的兩個焦點,若在C上存在一點P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓和雙曲線有公共的焦點,那么雙曲線的漸近線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線與橢圓共頂點,且焦距是6,此雙曲線的漸近線是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓C:(x+1)2+y2=16及點A(1,0),Q為圓C上一點,AQ的垂直平分線交CQ于M則點M的軌跡方程為                               .

查看答案和解析>>

同步練習冊答案