11.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}+x,a∈R$.
(1)當(dāng)a=0時,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)令g(x)=f(x)-ax+1,求函數(shù)g(x)的極大值;
(3)若a=-2,正實數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f(1),f′(1)的值,從而求出切線方程即可;
(2)求導(dǎo)數(shù),然后通過研究不等式的解集確定原函數(shù)的單調(diào)性;求出函數(shù)的極大值即可;
(3)結(jié)合已知條件構(gòu)造函數(shù),然后結(jié)合函數(shù)單調(diào)性得到要證的結(jié)論.

解答 解:(1)a=0時,f(x)=lnx+x,f′(x)=$\frac{1}{x}$+1,
故f(1)=1,f′(1)=2,
故切線方程是:y-1=2(x-1),
整理得:2x-y-1=0;
(2)g(x)=f(x)-(ax-1)=lnx-$\frac{1}{2}$ax2+(1-a)x+1,
所以g′(x)=$\frac{1}{x}$-ax+(1-a)=$\frac{-{ax}^{2}+(1-a)x+1}{x}$,
當(dāng)a≤0時,因為x>0,所以g′(x)>0.
所以g(x)在(0,+∞)上是遞增函數(shù),
當(dāng)a>0時,g′(x)=$\frac{-a(x-\frac{1}{a})(x+1)}{x}$,
令g′(x)=0,得x=$\frac{1}{a}$,
所以當(dāng)x∈(0,$\frac{1}{a}$)時,g′(x)>0;當(dāng)x∈($\frac{1}{a}$,+∞)時,g′(x)<0,
因此函數(shù)g(x)在x∈(0,$\frac{1}{a}$)是增函數(shù),在($\frac{1}{a}$,+∞)是減函數(shù).
綜上,當(dāng)a≤0時,函數(shù)g(x)的遞增區(qū)間是(0,+∞),無遞減區(qū)間,無極大值;
當(dāng)a>0時,函數(shù)g(x)的遞增區(qū)間是(0,$\frac{1}{a}$),遞減區(qū)間是($\frac{1}{a}$,+∞);
故g(x)極大值=g($\frac{1}{a}$)=$\frac{1}{a}$-lna;
證明:(3)由f(x1)+f(x2)+x1x2=0,
即lnx1+x12+x1+lnx2+x22+x2+x1x2=0,
從而(x1+x22+(x1+x2)=x1x2-ln(x1x2),
令t=x1x2,則由φ(t)=t-lnt,
由x1>0,x2>0,即x1+x2>0.
φ′(t)=$\frac{t-1}{t}$,(t>0),
可知,φ(t)在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增.
所以φ(t)≥φ(1)=1,
所以(x1+x22+(x1+x2)≥1,解得x1+x2≥$\frac{\sqrt{5}-1}{2}$或x1+x2≤$\frac{-\sqrt{5}-1}{2}$,
又因為x1>0,x2>0,
因此x1+x2≥$\frac{\sqrt{5}-1}{2}$成立.

點評 本題難度較大,屬于利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,以及利用導(dǎo)數(shù)證明單調(diào)性進一步研究不等式問題的題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標系xOy中,橢圓C與雙曲線${y^2}-\frac{x^2}{2}=1$共焦點,且點P(1,2)在橢圓C上.
(1)求橢圓C的方程;
(2)過定點A(2,0)作一條動直線與橢圓C相交于P,Q.O為坐標原點,求△OPQ面積的最大值及取得最大值時直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線y=x+b與圓x2+y2=1有公共點,則實數(shù)b的取值范圍是( 。
A.[-1,1]B.[0,1]C.[0,$\sqrt{2}$]D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)a>0,函數(shù)f(x)=x2-2ax-2alnx
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間(0,+∞)上有唯一零點,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F1(-c,0),F(xiàn)2(c,0)為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個焦點,點P(不在x軸上)為橢圓上的一點,且滿足${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}={c^2}$,則橢圓的離心率的取值范圍是(  )
A.$[{\frac{{\sqrt{3}}}{3},1})$B.$[{\frac{1}{3},\frac{1}{2}}]$C.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}})$D.$({0,\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某商場對一個月內(nèi)每天的顧客人數(shù)進行統(tǒng)計,得到如圖所示的樣本莖葉圖,則該樣本的中位數(shù)和眾數(shù)分別是( 。
A.46,45B.45,46C.45,45D.47,45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{lnx}{x}$,關(guān)于x的不等式f2(x)-af(x)>0有且只有三個整數(shù)解,則實數(shù)a的取值范圍是( 。
A.[$\frac{ln5}{5}$,$\frac{ln2}{2}$)B.[$\frac{ln5}{5}$,$\frac{ln3}{3}$)C.($\frac{ln5}{5}$,$\frac{ln2}{2}$]D.($\frac{ln5}{5}$,$\frac{ln3}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.△ABC的內(nèi)角A、B、C所對的邊分別是,a、b、c,△ABC的面積S=$\frac{\sqrt{3}}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$.
(Ⅰ)求A的大小;
(Ⅱ)若b+c=5,a=$\sqrt{7}$,求△ABC的面積的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.(x-$\sqrt{x}$)n的展開式中各項的二項式系數(shù)之和為16,則展開式中x2項的系數(shù)為1.

查看答案和解析>>

同步練習(xí)冊答案