分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f(1),f′(1)的值,從而求出切線方程即可;
(2)求導(dǎo)數(shù),然后通過研究不等式的解集確定原函數(shù)的單調(diào)性;求出函數(shù)的極大值即可;
(3)結(jié)合已知條件構(gòu)造函數(shù),然后結(jié)合函數(shù)單調(diào)性得到要證的結(jié)論.
解答 解:(1)a=0時,f(x)=lnx+x,f′(x)=$\frac{1}{x}$+1,
故f(1)=1,f′(1)=2,
故切線方程是:y-1=2(x-1),
整理得:2x-y-1=0;
(2)g(x)=f(x)-(ax-1)=lnx-$\frac{1}{2}$ax2+(1-a)x+1,
所以g′(x)=$\frac{1}{x}$-ax+(1-a)=$\frac{-{ax}^{2}+(1-a)x+1}{x}$,
當(dāng)a≤0時,因為x>0,所以g′(x)>0.
所以g(x)在(0,+∞)上是遞增函數(shù),
當(dāng)a>0時,g′(x)=$\frac{-a(x-\frac{1}{a})(x+1)}{x}$,
令g′(x)=0,得x=$\frac{1}{a}$,
所以當(dāng)x∈(0,$\frac{1}{a}$)時,g′(x)>0;當(dāng)x∈($\frac{1}{a}$,+∞)時,g′(x)<0,
因此函數(shù)g(x)在x∈(0,$\frac{1}{a}$)是增函數(shù),在($\frac{1}{a}$,+∞)是減函數(shù).
綜上,當(dāng)a≤0時,函數(shù)g(x)的遞增區(qū)間是(0,+∞),無遞減區(qū)間,無極大值;
當(dāng)a>0時,函數(shù)g(x)的遞增區(qū)間是(0,$\frac{1}{a}$),遞減區(qū)間是($\frac{1}{a}$,+∞);
故g(x)極大值=g($\frac{1}{a}$)=$\frac{1}{a}$-lna;
證明:(3)由f(x1)+f(x2)+x1x2=0,
即lnx1+x12+x1+lnx2+x22+x2+x1x2=0,
從而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),
令t=x1x2,則由φ(t)=t-lnt,
由x1>0,x2>0,即x1+x2>0.
φ′(t)=$\frac{t-1}{t}$,(t>0),
可知,φ(t)在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增.
所以φ(t)≥φ(1)=1,
所以(x1+x2)2+(x1+x2)≥1,解得x1+x2≥$\frac{\sqrt{5}-1}{2}$或x1+x2≤$\frac{-\sqrt{5}-1}{2}$,
又因為x1>0,x2>0,
因此x1+x2≥$\frac{\sqrt{5}-1}{2}$成立.
點評 本題難度較大,屬于利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,以及利用導(dǎo)數(shù)證明單調(diào)性進一步研究不等式問題的題型.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [0,1] | C. | [0,$\sqrt{2}$] | D. | [-$\sqrt{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{{\sqrt{3}}}{3},1})$ | B. | $[{\frac{1}{3},\frac{1}{2}}]$ | C. | $[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}})$ | D. | $({0,\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 46,45 | B. | 45,46 | C. | 45,45 | D. | 47,45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{ln5}{5}$,$\frac{ln2}{2}$) | B. | [$\frac{ln5}{5}$,$\frac{ln3}{3}$) | C. | ($\frac{ln5}{5}$,$\frac{ln2}{2}$] | D. | ($\frac{ln5}{5}$,$\frac{ln3}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com