一個鉛球的直徑是一個壘球的直徑的2倍,一個皮球的直徑又是一個鉛球直徑的3倍,則皮球的體積是壘球體積的( 。
A、6倍B、36倍
C、216倍D、125倍
考點(diǎn):球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:求出一個皮球的直徑是一個壘球的直徑的6倍,即可得出結(jié)論.
解答: 解:∵一個鉛球的直徑是一個壘球的直徑的2倍,一個皮球的直徑又是一個鉛球直徑的3倍,
∴一個皮球的直徑是一個壘球的直徑的6倍,
∴皮球的體積是壘球體積的216倍.
故選:C.
點(diǎn)評:本題考查球的體積,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線
x2
5
-
y2
4
=1的右焦點(diǎn),點(diǎn)P在雙曲線上,點(diǎn)Q在圓(x-8)2+(y-2)2=1上,則|PF|+|PQ|的最小值為( 。
A、3
5
-1
B、
5
+1
C、5
5
-1
D、7
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=(12-a)x在實(shí)數(shù)集R上是減函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A、(0,12)
B、(12,+∞)
C、(-∞,12)
D、(-12,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在頻率分布直方圖中,中位數(shù)兩側(cè)的面積和所占比例為( 。
A、1:3B、2:1
C、1:1D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中為真命題的是( 。
A、若m<1,則方程x2-2x+m=0無實(shí)數(shù)根
B、“矩形的兩條對角線相等”的逆命題
C、“若x2+y2=0,則x,y全為0”的否命題
D、“若a<b,則am2<bm2”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f1(x)=
1
12
x4+aex
(其中a是非零常數(shù),e是自然對數(shù)的底),記fn(x)=fn-1′(x)(n≥2,n∈N*
(1)求使?jié)M足對任意實(shí)數(shù)x,都有fn(x)=fn-1(x)的最小整數(shù)n的值(n≥2,n∈N*);
(2)設(shè)函數(shù)gn(x)=f4(x)+f5(x)+…+fn(x),若對?n≥5,n∈N*,y=gn(x)都存在極值點(diǎn)x=tn,求證:點(diǎn)An(tn,gn(tn))(n≥5,n∈N*)在一定直線上,并求出該直線方程;(注:若函數(shù)y=f(x)在x=x0處取得極值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).)
(3)是否存在正整數(shù)k(k≥4)和實(shí)數(shù)x0,使fk(x0)=fk-1(x0)=0且對于?n∈N*,fn(x)至多有一個極值點(diǎn),若存在,求出所有滿足條件的k和x0,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}的首項都為1,且an+1=2an+1,bn+1=log2(an+1)+bn
(1)證明:{an+1}是等比數(shù)列;
(2)設(shè)cn=(-1)n(2013-
2bn-2
n
)•(an+1),是否存在正整數(shù)n0≤2014,使得不等式c0≤cn0對任意的n∈N*且n≤2014恒成立?若存在,求出n0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,且2Sn=an2+an,數(shù)列{bn}滿足b1=1,2bn-bn-1=0(n≥2,n∈N *
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-a|+5x.
(Ⅰ)求不等式f(x)>5x+1的解集.
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.

查看答案和解析>>

同步練習(xí)冊答案