設(shè)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),有f(x)=x,則f(7.5)=( 。
A、7.5B、1.5
C、0.5D、-0.5
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性、周期性即可得出.
解答: 解:∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x).
∵f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),當(dāng)0≤x≤1時(shí),有f(x)=x,
∴f(-0.5)=-f(0.5)=-0.5.
∴f(7.5)=f(8-0.5)=f(-0.5)=-0.5.
故選:D.
點(diǎn)評:本題考查了函數(shù)的奇偶性、周期性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在(a-x3)(1+x)10的展開式中,x5的系數(shù)為207,則x6的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2-x-(m+1)=0在[-1,1]上有解,則m的取值范圍是( 。
A、-1≤m≤1
B、m≥-
5
4
C、m≤1
D、-
5
4
≤m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的奇函數(shù)f(x)=
x+m
x2+nx+1
是奇函數(shù),則常數(shù)m,n的值分別為( 。
A、m=0,n=1
B、m=1,n=1
C、m=0,n=0
D、m=1,n=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}定義如下:a1=1,a2=2,an+2=
2(n+1)
n+2
an+1-
n
n+2
an,n=1,2,…,若am>2+
2011
2012
,則正整數(shù)m的最小值為( 。
A、4025B、4250
C、3650D、4425

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x+1
2x-1
≤0的解集為( 。
A、(-∞,-
1
2
]∪[1,+∞)
B、[-
1
2
,1]
C、(-∞,-1)∪[
1
2
,+∞)
D、[-1,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x2+4x-7
x2+2x+3
的值域?yàn)椋ā 。?/div>
A、[-
9
2
,2]
B、(-
7
3
,0)
C、[-
7
3
,0)
D、[-
9
2
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x8-x5+x2-x+1,則以下說法正確的是(  )
A、當(dāng)x>0,f(x)≤0
B、?x∈R,f(x)<0
C、?x∈R,f(x)>0
D、以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)B在以AC為直徑的圓上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(Ⅰ)證明:SC⊥EF;
(Ⅱ)若SA=a,∠ASC=45°,∠AFE=30°,求三棱錐S-AEF的體積.

查看答案和解析>>

同步練習(xí)冊答案