【題目】如圖,長方體中,,,點(diǎn)分別在上,

1)求直線所成角的余弦值;

2)過點(diǎn)的平面與此長方體的表面相交,交線圍成一個正方形,求平面把該長方體分成的兩部分體積的比值.

【答案】1;(2

【解析】

1)連接或其補(bǔ)角即為所求;

2)根據(jù)在棱上找出點(diǎn)使得,體積之比轉(zhuǎn)化為面積之比.

1)連接,長方體中,,

所以四邊形是平行四邊形,所以平行且相等,

所以平行且相等,所以四邊形為平行四邊形,

所以

直線所成角就是或其補(bǔ)角,

,

中,由余弦定理,

,

所以直線所成角的余弦值為

2)設(shè)過點(diǎn)的平面與此長方體的表面相交,交線圍成一個正方形,即正方形,

,作

所以,所以圖中只能點(diǎn)在點(diǎn)的右側(cè),

平面把該長方體分成的兩部分為直棱柱和直棱柱,兩個直棱柱的高相等,

兩部分體積之比為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將標(biāo)號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片.把每列標(biāo)號最小的卡片選出,將這些卡片中標(biāo)號最大的數(shù)設(shè)為a;把每行標(biāo)號最大的卡片選出,將這些卡片中標(biāo)號最小的數(shù)設(shè)為b.

甲同學(xué)認(rèn)為a有可能比b大,乙同學(xué)認(rèn)為a和b有可能相等.那么甲乙兩位同學(xué)中說法正確的同學(xué)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,面是直角梯形,,,面是菱形,,.

(I)證明:

(I)已知點(diǎn)在線段上,且,若二面角的大小為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中數(shù)列的前項(xiàng)和,

1)若數(shù)列是首項(xiàng)為.公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式;

2)若,求證:數(shù)列滿足,并寫出的通項(xiàng)公式;

3)在(2)的條件下,設(shè),求證中任意一項(xiàng)總可以表示成該數(shù)列其它兩項(xiàng)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“工資條里顯紅利,個稅新政入民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實(shí)施的階段.某從業(yè)者為了解自己在個稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對應(yīng)年齡26-35歲)

(1)由散點(diǎn)圖知,可用回歸模型擬合的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;

(2)如果該從業(yè)者在個稅新政下的專項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個稅政策,估計(jì)他36歲時每個月少繳納的個人所得稅.

附注:參考數(shù)據(jù):,,,,

,,其中:取,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.

新舊個稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:

舊個稅稅率表(個稅起征點(diǎn)3500元)

新個稅稅率表(個稅起征點(diǎn)5000元)

繳稅

級數(shù)

每月應(yīng)納稅所得額(含稅)收入個稅起征點(diǎn)

稅率

每月應(yīng)納稅所得額(含稅)收入個稅起征點(diǎn)專項(xiàng)附加扣除

稅率

1

不超過1500元的都分

3

不超過3000元的都分

3

2

超過1500元至4500元的部分

10

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元的部分

30

超過35000元至55000元的部分

30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn)A(2,-1),和直線xy1相切,且圓心在直線y=-2x.

(1)求圓C的方程;

(2)已知直線l經(jīng)過(2,0)點(diǎn),并且被圓C截得的弦長為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列推理不屬于合情推理的是( )

A. 由銅、鐵、鋁、金、銀等金屬能導(dǎo)電,得出一切金屬都能導(dǎo)電.

B. 半徑為的圓面積,則單位圓面積為.

C. 由平面三角形的性質(zhì)推測空間三棱錐的性質(zhì).

D. 猜想數(shù)列2,4,8,…的通項(xiàng)公式為. .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論上的單調(diào)性;

(2)令,當(dāng)時,證明:對,使.

查看答案和解析>>

同步練習(xí)冊答案