【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.
【答案】(Ⅰ)(t為參數(shù)),;(Ⅱ)3.
【解析】
(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;
(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP||AQ|的值.
(Ⅰ)直線l1的參數(shù)方程為,(t為參數(shù))
即(t為參數(shù)).設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),
則,即,即ρ=4cosθ,
∴曲線C的直角坐標(biāo)方程為x2-4x+y2=0(x≠0).
(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,
得,
即,t1,t2為方程的兩個(gè)根,
∴t1t2=-3,∴|AP||AQ|=|t1t2|=|-3|=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.
(l)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且直線與交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,曲線由部分橢圓:和部分拋物線:連接而成,與的公共點(diǎn)為,,其中所在橢圓的離心率為.
(Ⅰ)求,的值;
(Ⅱ)過(guò)點(diǎn)的直線與,分別交于點(diǎn),(,,,中任意兩點(diǎn)均不重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的短軸端點(diǎn)為,,點(diǎn)是橢圓上的動(dòng)點(diǎn),且不與,重合,點(diǎn)滿足,.
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形中,,,,為中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(平面).
(Ⅰ)證明:;
(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】社區(qū)服務(wù)是高中學(xué)生社會(huì)實(shí)踐活動(dòng)的一個(gè)重要內(nèi)容,漢中某中學(xué)隨機(jī)抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務(wù)的時(shí)間,按,,,,(單位:小時(shí))進(jìn)行統(tǒng)計(jì),得出男生參加社區(qū)服務(wù)時(shí)間的頻率分布表和女生參加社區(qū)服務(wù)時(shí)間的頻率分布直方圖.
(1)完善男生參加社區(qū)服務(wù)時(shí)間的頻率分布表和女生參加社區(qū)服務(wù)時(shí)間的頻率分布直方圖.
抽取的100名男生參加社區(qū)服務(wù)時(shí)間的頻率分布表
社區(qū)服務(wù)時(shí)間 | 人數(shù) | 頻率 |
0.05 | ||
20 | ||
0.35 | ||
30 | ||
合計(jì) | 100 | 1 |
學(xué)生社區(qū)服務(wù)時(shí)間合格與性別的列聯(lián)表
不合格的人數(shù) | 合格的人數(shù) | |
男 | ||
女 |
(2)按高中綜合素質(zhì)評(píng)價(jià)的要求,高中學(xué)生每年參加社區(qū)服務(wù)的時(shí)間不少于20個(gè)小時(shí)才為合格,根據(jù)上面的統(tǒng)計(jì)圖表,完成抽取的這200名學(xué)生參加社區(qū)服務(wù)時(shí)間合格與性別的列聯(lián)表,并判斷是否有以上的把握認(rèn)為參加社區(qū)服務(wù)時(shí)間達(dá)到合格程度與性別有關(guān),并說(shuō)明理由.
(3)用以上這200名學(xué)生參加社區(qū)服務(wù)的時(shí)間估計(jì)全市9萬(wàn)名高中學(xué)生參加社區(qū)服務(wù)時(shí)間的情況,并以頻率作為概率.
(i)求全市高中學(xué)生參加社區(qū)服務(wù)時(shí)間不少于30個(gè)小時(shí)的人數(shù).
(ⅱ)對(duì)我市高中生參加社區(qū)服務(wù)的情況進(jìn)行評(píng)價(jià).
參考公式
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.002 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義向量的“相伴函數(shù)”為,函數(shù)的“相伴向量”為,其中O為坐標(biāo)原點(diǎn),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè),求證:;
(2)已知且,求其“相伴向量”的模;
(3)已知為圓上一點(diǎn),向量的“相伴函數(shù)”在處取得最大值,當(dāng)點(diǎn)M在圓C上運(yùn)動(dòng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求證:橢圓中斜率為的平行弦的中點(diǎn)軌跡必過(guò)橢圓中心;
(2)用作圖方法找出下面給定橢圓的中心;
(3)我們把由半橢圓與半橢圓合成的曲線稱作“果圓”,其中,,.如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,和,是“果圓” 與,軸的交點(diǎn). 連結(jié)“果圓”上任意兩點(diǎn)的線段稱為“果圓”的弦.試研究:是否存在實(shí)數(shù),使斜率為的“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上?若存在,求出所有可能的值,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com