【題目】已知圓C經(jīng)過點A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)已知直線l經(jīng)過(2,0)點,并且被圓C截得的弦長為2,求直線l的方程.
【答案】(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0.
【解析】
(1)由條件可知圓心的坐標(biāo)為,再根據(jù)條件轉(zhuǎn)化為關(guān)于的方程,根據(jù)圓的圓心和半徑寫出圓的標(biāo)準(zhǔn)方程;
(2)分斜率不存在和斜率存在兩種情況討論,利用弦長公式可知圓心到直線的距離是1,求直線方程.
(1)設(shè)圓心的坐標(biāo)為C(a,-2a),
則=.
化簡,得a2-2a+1=0,解得a=1.
所以C點坐標(biāo)為(1,-2),
半徑r=|AC|==.
故圓C的方程為(x-1)2+(y+2)2=2.
(2)①當(dāng)直線l的斜率不存在時,直線l的方程為x=2,此時直線l被圓C截得的弦長為2,
滿足條件.
②當(dāng)直線l的斜率存在時,設(shè)直線l的方程為y=k(x—2),即 kx-y-2k=0
由題意得,解得k=,
則直線l的方程為y=(x-2).
綜上所述,直線l的方程為x=2或3x-4y-6=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《人民網(wǎng)》報道,“美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.”據(jù)統(tǒng)計,中國新增綠化面積的420/0來自于植樹造林,下表是中國十個地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃
按造林方式分 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復(fù) | 人工更新 |
內(nèi)蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重慶 | 226333 | 100600 | 62400 | 63333 | ||
陜西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 |
(Ⅰ)請根據(jù)上述數(shù)據(jù),分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(Ⅱ)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)人工造林面積與造林總面積的比值不足50%的概率是多少?
(Ⅲ)從上表新封山育林面積超過十萬公頃的地區(qū)中,任選兩個地區(qū),求至少有一個地區(qū)退化林修復(fù)面積超過五萬公頃的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓過點、.
(1)求橢圓的方程;
(2)、為橢圓的左、右焦點,直線過與橢圓交于、兩點,求△面積的最大值;
(3)求動點的軌跡方程,使得過點存在兩條互相垂直的直線、,且都與橢圓只有一個公共點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體中,,,,點分別在上,
(1)求直線與所成角的余弦值;
(2)過點的平面與此長方體的表面相交,交線圍成一個正方形,求平面把該長方體分成的兩部分體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前n項和為,數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足,它的前n項和為,若存在正整數(shù)n,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的兩個焦點分別為F1,F2,短軸的一個端點為P,△PF1F2內(nèi)切圓的半徑為,設(shè)過點F2的直線l與被橢圓C截得的線段為RS,當(dāng)l⊥x軸時,|RS|=3.
(1) 求橢圓C的標(biāo)準(zhǔn)方程;
(2) 若點M(0,m),(),過點M的任一直線與橢圓C相交于兩點A.B,y軸上是否存在點N(0,n)使∠ANM=∠BNM恒成立?若存在,判斷m、n應(yīng)滿足關(guān)系;若不存在,說明理由。
(3) 在(2)條件下m=1時,求△ABN面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中,是菱形, 是矩形,平面,,,.
(1)求證:平面平面 ;
(2)在線段上取一點,當(dāng)二面角的大小為時,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個數(shù)是_________.
(1)命題“若,則方程有實數(shù)根”的逆否命題為“若方程無實數(shù)根,則”.
(2)命題“,”的否定“,”.
(3)若為假命題,則,均為假命題.
(4)“”是“直線:與直線:平行”的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面中兩條直線和相交于點O,對于平面上任意一點M,若x,y分別是M到直線和的距離,則稱有序非負(fù)實數(shù)對(x,y)是點M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且只有2個;
③若pq≠0則“距離坐標(biāo)”為(p,q)的點有且只有4個.
上述命題中,正確命題的是______.(寫出所有正確命題的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com