【題目】(本小題滿分12分)已知橢圓C的離心率為,連接橢圓四個(gè)頂點(diǎn)形成的四邊形面積為4

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過點(diǎn)A1,0)的直線與橢圓C交于點(diǎn)M, N,設(shè)P為橢圓上一點(diǎn),且O為坐標(biāo)原點(diǎn),當(dāng)時(shí),求t的取值范圍.

【答案】1;(2

【解析】

試題本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,先利用離心率、、四邊形的面積列出方程,解出ab的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,討論直線MN的斜率是否存在,當(dāng)直線MN的斜率存在時(shí),直線方程與橢圓方程聯(lián)立,消參,利用韋達(dá)定理,得到、,利用列出方程,解出,代入到橢圓上,得到的值,再利用,計(jì)算出的范圍,代入到的表達(dá)式中,得到t的取值范圍.

試題解析:(1,即

,

橢圓C的標(biāo)準(zhǔn)方程為

2)由題意知,當(dāng)直線MN斜率存在時(shí),

設(shè)直線方程為,,

聯(lián)立方程消去y,

因?yàn)橹本與橢圓交于兩點(diǎn),

所以恒成立,

,

因?yàn)辄c(diǎn)P在橢圓上,所以,

,

,

,整理得:

化簡(jiǎn)得:,解得(舍),

,即

當(dāng)直線MN的斜率不存在時(shí),,此時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)設(shè)函數(shù),討論的單調(diào)性;

2)設(shè)函數(shù),若的圖象與的圖象有,兩個(gè)不同的交點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問卷調(diào)查.現(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過3小時(shí)),類(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過3小時(shí)).調(diào)查結(jié)果如下表:

男生

5

3

女生

3

3

1)求出表中,的值;

2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為參加課外閱讀與否與性別有關(guān);

男生

女生

總計(jì)

不參加課外閱讀

參加課外閱讀

總計(jì)

PKk0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半正多面體(semiregular solid) 亦稱阿基米德多面體,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王想在某市一住宅小區(qū)買套新房,據(jù)了解,該小區(qū)有若干棟互相平行的平頂樓房,每棟樓房有15層,每層樓高為3米,頂樓有1米高的隔熱層,兩樓之間相距60.小王不想買最前面和最后面的樓房,但希望所買樓層全年每天正午都能曬到太陽.為此,小王查找了有關(guān)地理資料,獲得如下一些信息:①該市的緯度(地面一點(diǎn)所在球半徑與赤道平面所成的角)為北緯;②正午的太陽直射北回歸線(太陽光線與赤道平面所成的角為)時(shí),物體的影子最短,直射南回歸線(太陽光線與赤道平面所成的角為)時(shí),物體的影子最長(zhǎng),那么小王買房的最低樓層應(yīng)為(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)若射線的極坐標(biāo)方程為.設(shè)相交于點(diǎn)相交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對(duì)數(shù)的底)上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案