【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點,與相交于點,求.
【答案】(1)曲線的普通方程為;直線的直角坐標(biāo)方程為(2)
【解析】
(1)利用消去參數(shù),將曲線的參數(shù)方程化成普通方程,利用互化公式,
將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)根據(jù)(1)求出曲線的極坐標(biāo)方程,分別聯(lián)立射線與曲線以及射線與直線的極坐標(biāo)方程,求出和,即可求出.
解:(1)因為(為參數(shù)),所以消去參數(shù),得,
所以曲線的普通方程為.
因為所以直線的直角坐標(biāo)方程為.
(2)曲線的極坐標(biāo)方程為.
設(shè)的極徑分別為和,
將()代入,解得,
將()代入,解得.
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知橢圓C:的離心率為,連接橢圓四個頂點形成的四邊形面積為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點A(1,0)的直線與橢圓C交于點M, N,設(shè)P為橢圓上一點,且O為坐標(biāo)原點,當(dāng)時,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,解不等式;
(Ⅱ)若的圖象與x軸圍成圖形的面積大于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左頂點為,右焦點為,斜率為1的直線與橢圓交于,兩點,且,其中為坐標(biāo)原點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點且與直線平行的直線與橢圓交于,兩點,若點滿足,且與橢圓的另一個交點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓與軸交于 兩點,且.
(1)求橢圓的方程;
(2)設(shè)點是橢圓上的一個動點,且直線與直線分別交于 兩點.是否存在點使得以 為直徑的圓經(jīng)過點?若存在,求出點的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解運(yùn)動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變
B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4人
C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg)
D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com