設n是奇數(shù),x∈R,a,b分別表示(x-1)2n+1的展開式中系數(shù)大于0與小于0的項的個數(shù),那么( 。
A、a=b+2B、a=b+1
C、a=bD、a=b-1
考點:二項式系數(shù)的性質
專題:二項式定理
分析:由條件利用二項式定理、二項式展開式的通項公式可得a=b=n+1,從而得出結論.
解答: 解:∵(x-1)2n+1的展開式的通項公式為Tr+1=
C
r
2n+1
•x2n+1-r•(-1)r,展開式共計有2n+2項,
故正項有a=n+1個,負項有b=n+1個,∴a=b,
故選:C.
點評:本題主要考查二項式定理的應用,二項式系數(shù)的性質,二項式展開式的通項公式,求展開式中某項的系數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足
an+2
an+1
-
an+1
an
=k(k為常數(shù)),則稱{an}為等比數(shù)列,k叫公比差.已知{an}是以2為公比差的等比數(shù)列,其中a1=1,a2=2,則a5=( 。
A、16B、48
C、384D、1024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由曲線y=x與y=x2圍成的封閉圖形的面積為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是以1為首項、2為公差的等差數(shù)列,{bn}是以1為首項、2為公比的等比數(shù)列,則b a1+b a2+…+b a5等于(  )
A、85B、128
C、324D、341

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,有a3a11=4a7,數(shù)列{bn}是等差數(shù)列,且b4=a7,則b3+b5等于( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線ax+y=1的傾斜角120°,則a=(  )
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
9-x2
,則函數(shù)值域是(  )
A、[-3,3]
B、(-∞,3]
C、[0,3]
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1的直角坐標方程為
x2
4
+y2=1,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,P是曲線C1上一點,∠xOP=α(0≤α≤π),將點P繞點O逆時針旋轉角α后得到點Q,
OM
=2
OQ
,點M的軌跡是曲線C2,
(1)求曲線C2的極坐標方程;
(2)求|OM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點在坐標原點O,開口向上,等腰梯形ABCD下底AB的中點與坐標原點重合,上底DC∥x軸,等腰梯形的高是3,線段DC與拋物線相交于S,R,且SR=4,DA、AB、BC,分別于拋物線相切于點P、O、Q(如圖所示)
(1)求拋物線的方程
(2)當上底DC多大時,梯形ABCD面積有最小值,并求其最小值.

查看答案和解析>>

同步練習冊答案