12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}•\overrightarrow=\frac{1}{2}$,若$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,其中x>0,y>0且x+y=2,則|$\overrightarrow{c}$|最小值是$\sqrt{3}$.

分析 由平面向量的數(shù)量積計算${\overrightarrow{c}}^{2}$,利用基本不等式求出${\overrightarrow{c}}^{2}$的最小值,即可得出|$\overrightarrow{c}$|的最小值.

解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}•\overrightarrow=\frac{1}{2}$,
當$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$時,
${\overrightarrow{c}}^{2}$=x2${\overrightarrow{a}}^{2}$+2xy$\overrightarrow{a}$•$\overrightarrow$+y2${\overrightarrow}^{2}$
=x2+xy+y2
=(x+y)2-xy;
又x>0,y>0且x+y=2,
∴xy≤${(\frac{x+y}{2})}^{2}$=1,當且僅當x=y=1時取“=”,
∴${\overrightarrow{c}}^{2}$≥(x+y)2-${(\frac{x+y}{2})}^{2}$=22-1=3,
∴|$\overrightarrow{c}$|的最小值是$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查了平面向量的數(shù)量積與基本不等式的應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個焦點為${F_1},{F_2},|{{F_1}{F_2}}|=2\sqrt{2}$,點A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長等于$4\sqrt{3}$.
(1)求橢圓C的標準方程;
(2)過圓O:x2+y2=4上任意一點P作橢圓C的兩條切線PM和PN與圓O交于點M,N,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知集合A={x|-2≤x≤3},B={y|y=x2+2},則A∩B={x|2≤x≤3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在極坐標系中,已知直線l的方程為$ρcos(θ-\frac{π}{4})=2$,圓C的方程為ρ=4sinθ-2cosθ,試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若不等式f(a)≥f(x)對任意x∈[1,2]恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,1]B.[-1,1]C.(-∞,2]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,陰影部分是由四個全等的直角三角形組成的圖形,若直角三角形兩條直角邊的長分別為a,b,且a=2b,則在大正方形內(nèi)隨即擲一點,這一點落在正方形內(nèi)的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若函數(shù)$f(x)=\sqrt{3}sin(2x+φ)+cos(2x+φ)(|φ|<\frac{π}{2})$為偶函數(shù),則( 。
A.f(x)的最小正周期為π,且在$(0,\frac{π}{2})$上為增函數(shù)
B.f(x)的最小正周期為$\frac{π}{2}$,且在$(0,\frac{π}{4})$上為增函數(shù)
C.f(x)的最小正周期為$\frac{π}{2}$,且在$(0,\frac{π}{4})$上為減函數(shù)
D.f(x)的最小正周期為π,且在$(0,\frac{π}{2})$上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓C的上頂點T為圓心作圓T:x2+(y-1)2=r2(r>0),圓T與橢圓C在第一象限交于點A,在第二象限交于點B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求$\overrightarrow{TA}•\overrightarrow{TB}$的最小值,并求出此時圓T的方程;
(Ⅲ)設點P是橢圓C上異于A,B的一點,且直線PA,PB分別與Y軸交于點M,N,O為坐標原點,求證:|OM|•|ON|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$,若a=$\frac{1}{2}$,則函數(shù)g(x)=f(x)-1有1個零點,若存在示數(shù)b,使函數(shù)h(x)=f(x)-b有兩個零點,則a的取值范圍是a<0或a>1.

查看答案和解析>>

同步練習冊答案