2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$,若a=$\frac{1}{2}$,則函數(shù)g(x)=f(x)-1有1個(gè)零點(diǎn),若存在示數(shù)b,使函數(shù)h(x)=f(x)-b有兩個(gè)零點(diǎn),則a的取值范圍是a<0或a>1.

分析 由題意,g(1)=f(1)-1=0,即函數(shù)g(x)=f(x)-1有1個(gè)零點(diǎn)1;函數(shù)h(x)=f(x)-b有兩個(gè)零點(diǎn),則a3>a2,即可得出結(jié)論.

解答 解:由題意,g(1)=f(1)-1=0,即函數(shù)g(x)=f(x)-1有1個(gè)零點(diǎn)1;
函數(shù)h(x)=f(x)-b有兩個(gè)零點(diǎn),則a<0或a3>a2,∴a<0或a>1.
故答案為1;a<0或a>1.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}•\overrightarrow=\frac{1}{2}$,若$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,其中x>0,y>0且x+y=2,則|$\overrightarrow{c}$|最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知等比數(shù)列{an}滿足:${a_1}=\frac{1}{16}$,a3a7=2a5-1,則a3=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某市公租房的房源位于A,B,C,D四個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請(qǐng)人中:
(1)求恰有1人申請(qǐng)A片區(qū)房源的概率;
(2)用x表示選擇A片區(qū)的人數(shù),求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,若輸入的a,b的值分別為0和9,則輸出的i的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在一次比賽中某隊(duì)共有甲,乙,丙等5位選手參加,賽前用抽簽的方法決定出場(chǎng)的順序,則乙、丙都不與甲相鄰出場(chǎng)的概率是( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某商場(chǎng)門口安裝了3個(gè)彩燈,它們閃亮的順序不固定,每個(gè)彩燈只能是紅、黃、綠中的一種顏色,且這3個(gè)彩燈閃亮的顏色各不相同,記這3個(gè)彩燈有序地閃亮一次為一個(gè)閃爍.在每個(gè)閃爍中,每秒鐘有且只有一個(gè)彩燈閃亮,且相鄰兩個(gè)閃爍的時(shí)間間隔均為3秒.如果要實(shí)現(xiàn)所有不同的閃爍,那么需要的時(shí)間至少是( 。
A.36秒B.33秒C.30秒D.15秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a6=8a3,則$\frac{S_6}{S_3}$=( 。
A.4B.5C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2016年某省人社廳推出15項(xiàng)改革措施,包括機(jī)關(guān)事業(yè)單位基本養(yǎng)老保險(xiǎn)制度改革、調(diào)整機(jī)關(guān)事業(yè)單位工資標(biāo)準(zhǔn)、全省縣以下機(jī)關(guān)建立職務(wù)與職級(jí)并行制度.某市為了了解該市市民對(duì)這些改革措施的態(tài)度,在該市隨機(jī)抽取了50名市民進(jìn)行調(diào)查,作出了他們?cè)率杖耄▎挝唬喊僭,范圍:[15,75])的頻率分布直方圖,同時(shí)得到其中各種月收入情況的市民對(duì)該項(xiàng)政策贊成的人數(shù)統(tǒng)計(jì)表.
月收入贊成人數(shù)
[15,25)4
[25,35)8
[35,45)12
[45,55)5
[55,65)2
[65,75]2
(1)求月收入在百元內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖,在圖中標(biāo)出相應(yīng)的縱坐標(biāo);
(2)根據(jù)頻率分布直方圖估計(jì)這50人的平均月收入;
(3)為了這個(gè)改革方案能夠更好的實(shí)施,從這些調(diào)查者中選取代表提供建議,若從月收入在[35,45)百元和[65,75]百元的不贊成的被調(diào)查者中隨機(jī)抽取2人,求這兩名代表月收入差不超過1000元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案