3.已知集合A={x|-2≤x≤3},B={y|y=x2+2},則A∩B={x|2≤x≤3}.

分析 先分別求出集合A,B,由此利用交集定義能求出A∩B.

解答 解:∵集合A={x|-2≤x≤3},
B={y|y=x2+2}={y|y≥2},
∴A∩B={x|2≤x≤3}.
故答案為:{x|2≤x≤3}.

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}的前n項(xiàng)和為Sn,若公差d>0,(S8-S5)(S9-S5)<0,則( 。
A.|a7|>|a8|B.|a7|<|a8|C.|a7|=|a8|D.|a7|=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知F1(-c,0)、F2(c,0)分別是橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{4}=1({a>0})$的左、右焦點(diǎn),點(diǎn)M是橢圓上一點(diǎn),且MF2⊥F1F2,|MF1|-|MF2|=$\frac{4}{3}$a.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點(diǎn),以AB為底作等腰三角形,頂點(diǎn)為P(-3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知⊙M:(x+1)2+y2=$\frac{49}{4}$的圓心為M,⊙N:(x-1)2+y2=$\frac{1}{4}$的圓心為N,一動圓M內(nèi)切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)設(shè)A,B分別為曲線P與x軸的左右兩個交點(diǎn),過點(diǎn)(1,0)的直線l與曲線P交于C,D兩點(diǎn).若$\overrightarrow{AC}•\overrightarrow{DB}+\overrightarrow{AD}•\overrightarrow{CB}$=12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,短軸長為2,直線l與圓O:x2+y2=$\frac{4}{5}$相切,且與橢圓C相交于M、N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)證明:$\overrightarrow{OM}$•$\overrightarrow{ON}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知F為雙曲線$C:\frac{x^2}{4}-\frac{y^2}{2}=1$的一個焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,ACQP所在的平面與菱形ABCD所在的平面相互垂直,交線為AC,若$AC=\sqrt{2}AP,E,F(xiàn)$分別是PQ,CQ的中點(diǎn).求證:
(1)CE∥平面PBD;
(2)平面FBD⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}•\overrightarrow=\frac{1}{2}$,若$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,其中x>0,y>0且x+y=2,則|$\overrightarrow{c}$|最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知等比數(shù)列{an}滿足:${a_1}=\frac{1}{16}$,a3a7=2a5-1,則a3=$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案