已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足=an+bn (n∈N*),其中{an},{bn}分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點(diǎn),若P1是線段AB的中點(diǎn).
(1)求a1,b1的值.
(2)點(diǎn)P1,P2,P3,…,Pn,…能否在同一條直線上?請(qǐng)證明你的結(jié)論.
解:(1)P1是線段AB的中點(diǎn)⇒=+,
又=a1+b1,且,不共線,
由平面向量基本定理,知a1=b1=.
(2)由=an+bn (n∈N*)⇒=(an,bn),
設(shè){an}的公差為d,{bn}的公比為q,則由于P1,P2,P3,…,Pn,…互不相同,所以d=0,q=1不會(huì)同時(shí)成立.
若d=0,q≠1,則an=a1=(n∈N*)
⇒P1,P2,P3,…,Pn,…都在直線x=上;
若q=1,d≠0,則bn=為常數(shù)列
⇒P1,P2,P3,…,Pn,…都在直線y=上;
若d≠0且q≠1,P1,P2,P3,…,Pn,…在同一條直線上⇔=(an-an-1,bn-bn-1)與=(an+1-an,bn+1-bn)始終共線(n≥2,n∈N*)
⇔(an-an-1)(bn+1-bn)-(an+1-an)(bn-bn-1)=0
⇔d(bn+1-bn)-d(bn-bn-1)=0
⇔bn+1-bn=bn-bn-1
⇔q=1,這與q≠1矛盾,
所以當(dāng)d≠0且q≠1時(shí),P1,P2,P3,…,Pn,…不可能在同一條直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)各項(xiàng)都是正數(shù)的等比數(shù)列{an},Sn為前n項(xiàng)和,且S10=10,S30=70,那么S40=( )
A.150 B.-200
C.150或-200 D.400或-50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn=3n,數(shù)列{bn}滿足b1=-1,bn+1=bn+(2n-1)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{bn}的通項(xiàng)公式bn;
(3)若cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列{an}中,若an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”,已知數(shù)列{bn}為“凸數(shù)列”,且b1=1,b2=-2,則數(shù)列{bn}的前2 013項(xiàng)和為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓:的離心率
為且與雙曲線:有共同焦點(diǎn).
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點(diǎn)作的切線,求與坐標(biāo)軸圍成的三角形的面積的最小值;
(3)設(shè)橢圓的左、右頂點(diǎn)分別為,過橢圓上的一點(diǎn)作軸的垂線交軸于點(diǎn),若點(diǎn)滿足,,連結(jié)交于點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法計(jì)算,其參考數(shù)據(jù)如下:
f (1) = -2 | f (1. 5) = 0.625 | f (1.25) = -0.984 |
f (1.375) = -0.260 | f (1.4375) = 0.162 | f (1.40625) = -0.054 |
那么方程的一個(gè)最接近的近似根為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com