已知雙曲線-=1(a,b>0)的右焦點(diǎn)F,若過F且傾斜角為60°的直線l與雙曲線的右支有且只有1個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F是橢圓+=1的左焦點(diǎn),且橢圓上有2011個(gè)不同的點(diǎn)Pi(xi,yi)(i=1,2,3,…,2011),且線段|FP1|,|FP2|,|FP3|,…,|FP2011|的長(zhǎng)度成等差數(shù)列,若|FP1|=2,|FP2011|=8,則點(diǎn)P2010的橫坐標(biāo)為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)。
(1)若在上為減函數(shù),求的取值范圍;
(2)若關(guān)于的方程在內(nèi)有兩不等實(shí)根,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知以F1(-2,0)、F2(2,0)為焦點(diǎn)的橢圓與直線x+y+4=0有且僅有一個(gè)公共點(diǎn),則橢圓的長(zhǎng)軸長(zhǎng)為( )
A.3 B.2
C.2 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=4x,過點(diǎn)M(0,2)的直線l與拋物線交于A、B兩點(diǎn),且直線l與x軸交于點(diǎn)C.
(1)求證:|MA|,|MC|,|MB|成等比數(shù)列;
(2)設(shè),試問α+β是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)F(,0),直線l:x=-,點(diǎn)P在直線l上移動(dòng),R是線段PF與y軸的交點(diǎn),RQ⊥FP,PQ⊥l.
(1)求動(dòng)點(diǎn)Q的軌跡C的方程;
(2)設(shè)圓M過A(1,0),且圓心M在曲線C上,TS是圓M在y軸上截得的弦,當(dāng)M運(yùn)動(dòng)時(shí),弦長(zhǎng)|TS|是否為定值?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
雙曲線-=-1(b>0,a>0)與拋物線y=x2有一個(gè)公共焦點(diǎn)F,雙曲線的過點(diǎn)F且垂直于y軸的弦長(zhǎng)為,則雙曲線的離心率等于( )
A.2 B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若拋物線y2=4x的焦點(diǎn)為F,過F且斜率為1的直線交拋物線于A、B兩點(diǎn),動(dòng)點(diǎn)P在曲線y2=-4x(y≥0)上,則△PAB的面積的最小值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com