若函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是單調(diào)遞增函數(shù).如果實數(shù)t滿足f(ln t)+f≤2f(1),那么t的取值范圍是________.
科目:高中數(shù)學(xué) 來源: 題型:
從甲、乙等5名志愿者中選出4名,分別從事A,B,C,D四項不同的工作,每人承擔(dān)一項.若甲、乙二人均不能從事A工作,則不同的工作分配方案共有( )
A.60種 B.72種 C.84種 D.96種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+1)=-f(x),且當(dāng)x∈[0,1)時,f(x)=log2(x+1),給出下列命題:
①f(2 013)+f(-2 014)的值為0;
②函數(shù)f(x)在定義域上為周期是2的周期函數(shù);
③直線y=x與函數(shù)f(x)的圖象有1個交點;
④函數(shù)f(x)的值域為(-1,1).
其中正確命題的序號有________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)f(x)=的定義域為實數(shù)集R,則實數(shù)a的取值范圍為( )
A.(-2,2)
B.(-∞,-2)∪(2,+∞)
C.(-∞,-2]∪[2,+∞)
D.[-2,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在實數(shù)集R中定義一種運算“*”,對任意a,b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì):
(1)對任意a∈R,a*0=a;
(2)對任意a,b∈R,a*b=ab+(a*0)+(b*0).
關(guān)于函數(shù)f(x)=(ex)*的性質(zhì),有如下說法:①函數(shù)f(x)的最小值為3;②函數(shù)f(x)為偶函數(shù);③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0].
其中所有正確說法的個數(shù)為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)的圖象向右平移a(a>0)個單位后關(guān)于x=a+1對稱,當(dāng)x2>x1>1時,[f(x2)-f(x1)](x2-x1)<0恒成立,設(shè)a=f,b=f(2),c=f(e),則a,b,c的大小關(guān)系為( )
A.c>a>b B.c>b>a
C.a>c>b D.b>a>c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時,f(x)=2x.若對任意的x∈[a,a+2],不等式f(x+a)≥f2(x)恒成立,則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列結(jié)論中:
①函數(shù)y=x(1-2x)(x>0)有最大值;
②函數(shù)y=2-3x-(x<0)有最大值2-4;
③若a>0,則(1+a)≥4.
正確結(jié)論的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)等差數(shù)列{an}的前n項和為Sn,已知a1=2,S6=22.
(1)求Sn的表達式;
(2)若從{an}中抽取一個公比為q的等比數(shù)列{akn},其中k1=1,且k1<k2<…<kn(kn∈N*).
①當(dāng)q取最小值時,求{kn}的通項公式;
②若關(guān)于n(n∈N*)的不等式6Sn>kn+1有解,試求q的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com